Skip to main content

Advertisement

Log in

Charge-reversible crosslinked nanoparticle for pro-apoptotic peptide delivery and synergistic photodynamic cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although anti-cancer nanotherapeutics have made breakthroughs, many remain clinically unsatisfactory due to limited delivery efficiency and complicated biological barriers. Here, we prepared charge-reversible crosslinked nanoparticles (PDC NPs) by supramolecular self-assembly of pro-apoptotic peptides and photosensitizers, followed by crosslinking the self-assemblies with polyethylene glycol to impart tumor microenvironment responsiveness and charge-reversibility. The resultant PDC NPs have a high drug loading of 68.3%, substantially exceeding that of 10%–15% in conventional drug delivery systems. PDC NPs can overcome the delivery hurdles to significantly improve the tumor accumulation and endocytosis of payloads by surface charge reversal and responsive crosslinking strategy. Pro-apoptotic peptides target the mitochondrial membranes and block the respiratory effect to reduce local oxygen consumption, which extensively augments oxygen-dependent photodynamic therapy (PDT). The photosensitizers around mitochondria increased along with the peptides, allowing PDT to work with pro-apoptotic peptides synergistically to induce tumor cell death by mitochondria-dependent apoptotic pathways. Our strategy would provide a valuable reference for improving the delivery efficiency of hydrophilic peptides and developing mitochondrial-targeting cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acar, H.; Ting, J. M.; Srivastava, S.; LaBelle, J. L.; Tirrell, M. V. Molecular engineering solutions for therapeutic peptide delivery. Chem. Soc. Rev. 2017, 46, 6553–6569.

    Article  CAS  Google Scholar 

  2. Niu, Z. G.; Conejos-Sánchez, I.; Griffin, B. T.; O’Driscoll, C. M.; Alonso, M. J. Lipid-based nanocarriers for oral peptide delivery. Adv. Drug Delivery Rev. 2016, 106, 337–354.

    Article  CAS  Google Scholar 

  3. Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113.

    Article  Google Scholar 

  4. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.

    Article  CAS  Google Scholar 

  5. Zhang, M. J.; Shao, W. X.; Yang, T. R.; Liu, H. L.; Guo, S.; Zhao, D. Y.; Weng, Y. H.; Liang, X. J.; Huang, Y. Y. Conscription of immune cells by light-activatable silencing NK-derived exosome (LASNEO) for synergetic tumor eradication. Adv. Sci. 2022, 9, 2201135.

    Article  CAS  Google Scholar 

  6. Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater. 2017, 29, 1606628.

    Article  Google Scholar 

  7. Ding, Y. Y.; Wang, Y. X.; Hu, Q. Y. Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. Exploration 2022, 2, 20210106.

    Article  Google Scholar 

  8. Moghimi, S. M.; Szebeni, J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 2003, 42, 463–478.

    Article  CAS  Google Scholar 

  9. Owens III, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93–102.

    Article  CAS  Google Scholar 

  10. Guan, X. W.; Guo, Z. P.; Lin, L.; Chen, J.; Tian, H. Y.; Chen, X. S. Ultrasensitive pH triggered charge/size dual-rebound gene delivery system. Nano Lett. 2016, 16, 6823–6831.

    Article  CAS  Google Scholar 

  11. Li, L. M.; Lindstrom, A. R.; Birkeland, A. C.; Tang, M. H.; Lin, T. Y.; Zhou, Y. K.; Xiang, B.; Xue, X. D.; Li, Y. P. Deep tumor-penetrating nano-delivery strategy to improve diagnosis and therapy in patient-derived xenograft (PDX) oral cancer model and patient tissue. Nano Res. 2023, 16, 2927–2937.

    Article  CAS  Google Scholar 

  12. Xue, X. D.; Huang, Y.; Bo, R. N.; Jia, B.; Wu, H.; Yuan, Y.; Wang, Z. L.; Ma, Z.; Jing, D.; Xu, X. B. et al. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat. Commun. 2018, 9, 3653.

    Article  Google Scholar 

  13. Xue, X. D.; Qu, H. J.; Bo, R. N.; Zhang, D. L.; Zhu, Z.; Xiang, B.; Li, L. M.; Ricci, M.; Pan, C. X.; Lin, T. Y. et al. A transformable nanoplatform with multiple therapeutic and immunostimulatory properties for treatment of advanced cancers. Biomaterials 2023, 299, 122145.

    Article  CAS  Google Scholar 

  14. Chen, S.; Rong, L.; Lei, Q.; Cao, P. X.; Qin, S. Y.; Zheng, D. W.; Jia, H. Z.; Zhu, J. Y.; Cheng, S. X.; Zhuo, R. X. et al. A surface charge-switchable and folate modified system for co-delivery of proapoptosis peptide and p53 plasmid in cancer therapy. Biomaterials 2016, 77, 149–163.

    Article  CAS  Google Scholar 

  15. Muttenthaler, M.; King, G. F.; Adams, D. J.; Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discovery 2021, 20, 309–325.

    Article  CAS  Google Scholar 

  16. Zhu, W. J.; Yang, Y.; Jin, Q. T.; Chao, Y.; Tian, L. L.; Liu, J. J.; Dong, Z. L.; Liu, Z. Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 2019, 12, 1307–1312.

    Article  CAS  Google Scholar 

  17. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

    Article  CAS  Google Scholar 

  18. Ellerby, H. M.; Arap, W.; Ellerby, L. M.; Kain, R.; Andrusiak, R.; Del Rio, G.; Krajewski, S.; Lombardo, C. R.; Rao, R.; Ruoslahti, E. et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med. 1999, 5, 1032–1038.

    Article  CAS  Google Scholar 

  19. Javadpour, M. M.; Juban, M. M.; Lo, W. C. J.; Bishop, S. M.; Alberty, J. B.; Cowell, S. M.; Becker, C. L.; McLaughlin, M. L. De novo antimicrobial peptides with low mammalian cell toxicity. J. Med. Chem. 1996, 39, 3107–3113.

    Article  CAS  Google Scholar 

  20. Yan, J. Q.; Chen, J.; Zhang, N.; Yang, Y. D.; Zhu, W. W.; Li, L.; He, B. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. J. Mater. Chem. B 2020, 8, 492–503.

    Article  CAS  Google Scholar 

  21. Wang, D. M.; Chen, L.; Wang, M. Y.; Cui, M. Y.; Huang, L. L.; Xia, W.; Guan, X. G. Delivering proapoptotic peptide by HSP nanocage for cancer therapy. Macromol. Chem. Phys. 2020, 221, 2000003.

    Article  CAS  Google Scholar 

  22. An, H. W.; Mamuti, M.; Wang, X. F.; Yao, H. D.; Wang, M. D.; Zhao, L. N.; Li, L. L. Rationally designed modular drug delivery platform based on intracellular peptide self-assembly. Exploration 2021, 1, 20210153.

    Article  Google Scholar 

  23. Levin, A.; Hakala, T. A.; Schnaider, L.; Bernardes, G. J. L.; Gazit, E.; Knowles, T. P. J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634.

    Article  CAS  Google Scholar 

  24. Xue, X. D.; Huang, Y.; Wang, X. S.; Wang, Z. L.; Carney, R. P.; Li, X. C.; Yuan, Y.; He, Y. X.; Lin, T. Y.; Li, Y. P. Self-indicating, fully ]active pharmaceutical ingredients nanoparticles (FAPIN) for multimodal imaging guided trimodality cancer therapy. Biomaterials 2018, 161, 203–215.

    Article  CAS  Google Scholar 

  25. Xue, X. D.; Zhao, Y. Y.; Dai, L. R.; Zhang, X.; Hao, X. H.; Zhang, C. Q.; Huo, S. D.; Liu, J.; Liu, C.; Kumar, A. et al. Spatiotemporal drug release visualized through a drug delivery system with tunable aggregation-induced emission. Adv. Mater. 2014, 26, 712–717.

    Article  CAS  Google Scholar 

  26. Liang, Y. S.; Zhi, S.; Qiao, Z. X.; Meng, F. C. Predicting blood-brain barrier permeation of erlotinib and JCN037 by molecular simulation. J. Membr. Biol. 2023, 256, 147–157.

    Article  CAS  Google Scholar 

  27. Xue, X. D.; Qu, H. J.; Li, Y. P. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration 2022, 2, 20210134.

    Article  Google Scholar 

  28. Qu, H. J.; Chen, H.; Cheng, W.; Wang, Y. J.; Xia, Y. Y.; Zhang, L. H.; Ma, B. Y.; Hu, R.; Xue, X. D. A supramolecular assembly strategy for hydrophilic drug delivery towards synergistic cancer treatment. Acta Biomater. 2023, 164, 407–421.

    Article  CAS  Google Scholar 

  29. Zhang, X. L.; Zhang, C. N.; Cheng, M. B.; Zhang, Y. H.; Wang, W.; Yuan, Z. Dual pH-responsive “charge-reversal like” gold nanoparticles to enhance tumor retention for chemo-radiotherapy. Nano Res. 2019, 12, 2815–2826.

    Article  CAS  Google Scholar 

  30. Lu, M.; Xing, H. N.; Shao, W. X.; Wu, P. F.; Fan, Y. C.; He, H. N.; Barth, S.; Zheng, A. P.; Liang, X. J.; Huang, Y. Y. Antitumor synergism between PAK4 silencing and immunogenic phototherapy of engineered extracellular vesicles. Acta Pharm. Sin. B, in press, https://doi.org/10.1016/j.apsb.2023.03.020.

  31. Lu, M.; Xing, H. N.; Shao, W. X.; Zhang, T.; Zhang, M. J.; Wang, Y. C.; Li, F. Z.; Weng, Y. H.; Zheng, A. P.; Huang, Y. Y. et al. Photoactivatable silencing extracellular vesicle (PASEV) sensitizes cancer immunotherapy. Adv. Mater. 2022, 34, 2204765.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Nos. 82172084 and 81803002) and STI2030-Major Projects (No. 2022ZD0212500). Scheme is created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-Jie Liang or Xiangdong Xue.

Electronic supplementary material

12274_2023_5912_MOESM1_ESM.pdf

Charge-reversible crosslinked nanoparticle for pro-apoptotic peptide delivery and synergistic photodynamic cancer therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, H., Chen, H., Cheng, W. et al. Charge-reversible crosslinked nanoparticle for pro-apoptotic peptide delivery and synergistic photodynamic cancer therapy. Nano Res. 16, 13267–13282 (2023). https://doi.org/10.1007/s12274-023-5912-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5912-7

Keywords

Navigation