Skip to main content
Log in

Intrinsic spin Hall resonance in Bi-based Janus monolayers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The spin Hall resonance effect (SHRE) characterized by a large spin Hall conductivity (SHC) holds immense promise for achieving spin logic and memory devices. However, the identification of a material capable of achieving intrinsic SHRE remains elusive. Herein, we present compelling evidence of intrinsic SHRE within the Bi-based Janus BiXY (X = S, Se and Te; Y = Cl, Br and I) monolayers through first-principles calculations and an effective Hamiltonian model. We attribute the unusual scenario to the warping effect in the Janus monolayers which induces a non-zero out-of-plane spin component, accompanied by additional Rashba degenerate points. Furthermore, we develop a comprehensive effective Rashba Hamiltonian, incorporating high order terms of k to accurately describe the intrinsic SHRE and establish the resilience of this phenomenon in the Janus monolayers. Our study presents a captivating platform for exploring intrinsic SHRE and opens up exciting avenues for the development of novel spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; Von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

    CAS  Google Scholar 

  2. Žutić, I.; Fabian, J.; Sarma, S. D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

    Google Scholar 

  3. Bader, S. D.; Parkin, S. S. P. Spintronics. Annu. Rev. Condens. Matter Phys. 2010, 1, 71–88.

    CAS  Google Scholar 

  4. Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016, 11, 231–241.

    CAS  Google Scholar 

  5. Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90, 015005.

    CAS  Google Scholar 

  6. Šmejkal, L.; Mokrousov, Y.; Yan, B. H.; MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 2018, 14, 242–251.

    Google Scholar 

  7. Guo, L. D.; Gu, X. R.; Zhu, X. W.; Sun, X. N. Recent advances in molecular spintronics: Multifunctional spintronic devices. Adv. Mater. 2019, 31, 1805355.

    CAS  Google Scholar 

  8. He, Q. L.; Hughes, T. L.; Armitage, N. P.; Tokura, Y.; Wang, K. L. Topological spintronics and magnetoelectronics. Nat. Mater. 2022, 21, 15–23.

    CAS  Google Scholar 

  9. Kim, S. K.; Beach, G. S. D.; Lee, K. J.; Ono, T.; Rasing, T.; Yang, H. Ferrimagnetic spintronics. Nat. Mater. 2022, 21, 24–34.

    CAS  Google Scholar 

  10. Kato, Y. K.; Myers, R. C.; Gossard, A. C.; Awschalom, D. D. Observation of the spin hall effect in semiconductors. Science 2004, 306, 1910–1913.

    CAS  Google Scholar 

  11. Murakami, S.; Nagaosa, N.; Zhang, S. C. Dissipationless quantum spin current at room temperature. Science 2003, 301, 1348–1351.

    CAS  Google Scholar 

  12. Hirsch, J. E. Spin hall effect. Phys. Rev. Lett. 1999, 83, 1834–1837.

    CAS  Google Scholar 

  13. Zhang, S. F. Spin hall effect in the presence of spin diffusion. Phys. Rev. Lett. 2000, 85, 393–396.

    CAS  Google Scholar 

  14. Safeer, C. K.; Ingla-Aynés, J.; Ontoso, N.; Herling, F.; Yan, W. J.; Hueso, L. E.; Casanova, F. Spin hall effect in bilayer graphene combined with an insulator up to room temperature. Nano Lett. 2020, 20, 4573–4579.

    CAS  Google Scholar 

  15. Wunderlich, J.; Kaestner, B.; Sinova, J.; Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 2005, 94, 047204.

    CAS  Google Scholar 

  16. Day, C. Two groups observe the spin hall effect in semiconductors. Phys. Today 2005, 58, 17–19.

    Google Scholar 

  17. Sinova, J.; Valenzuela, S. O.; Wunderlich, J.; Back, C. H.; Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 2015, 87, 1213–1260.

    Google Scholar 

  18. Sinova, J.; Culcer, D.; Niu, Q.; Sinitsyn, N. A.; Jungwirth, T.; MacDonald, A. H. Universal intrinsic spin hall effect. Phys. Rev. Lett. 2004, 92, 126603.

    Google Scholar 

  19. Safeer, C. K.; Ingla-Aynés, J.; Herling, F.; Garcia, J. H.; Vila, M.; Ontoso, N.; Calvo, M. R.; Roche, S.; Hueso, L. E.; Casanova, F. Room-temperature spin hall effect in graphene/MoS2 van der waals heterostructures. Nano Lett. 2019, 19, 1074–1082.

    CAS  Google Scholar 

  20. Bychkov, Y. A.; Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C Solid State Phys. 1984, 17, 6039–6045.

    Google Scholar 

  21. Bychkov, Y. A.; Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984, 39, 78–83.

    Google Scholar 

  22. Petersen, L.; Hedegård, P. A simple tight-binding model of spin-orbit splitting of sp-derived surface states. Surf. Sci. 2000, 459, 49–56.

    CAS  Google Scholar 

  23. Inoue, J. I.; Bauer, G. E. W.; Molenkamp, L. W. Suppression of the persistent spin Hall current by defect scattering. Phys. Rev. B 2004, 70, 041303.

    Google Scholar 

  24. Dimitrova, O. V. Vanishing spin-hall conductivity in 2D disordered Rashba electron gas. 2004, arXiv: cond-mat/0405339. arXiv.org e-Print archive. https://arxiv.org/abs/cond-mat/0405339v2 (accessed Sep 16, 2004).

  25. Murakami, S. Absence of vertex correction for the spin Hall effect in p-type semiconductors. Phys. Rev. B 2004, 69, 241202.

    Google Scholar 

  26. Shen, S. Q.; Ma, M.; Xie, X. C.; Zhang, F. C. Resonant spin hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field. Phys. Rev. Lett. 2004, 92, 256603.

    Google Scholar 

  27. Ma, T. X.; Liu, Q. Sign changes and resonance of intrinsic spin Hall effect in two-dimensional hole gas. Appl. Phys. Lett. 2006, 89, 112102.

    Google Scholar 

  28. Bhattacharya, A.; Islam, S. K. F. Photoinduced spin-Hall resonance in a k3-Rashba spin-orbit coupled two-dimensional hole system. Phys. Rev. B 2021, 104, L081411.

    CAS  Google Scholar 

  29. De Gennes, P. G. Soft matter. Rev. Mod. Phys. 1992, 64, 645–648.

    Google Scholar 

  30. Lu, A. Y.; Zhu, H. Y.; Xiao, J.; Chuu, C. P.; Han, Y. M.; Chiu, M. H.; Cheng, C. C.; Yang, C. W.; Wei, K. H.; Yang, Y. M. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 2017, 12, 744–749.

    CAS  Google Scholar 

  31. Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D.; Chen, W. B.; Guo, H.; Jin, Z. H.; Shenoy, V. B.; Shi, L. et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 2017, 11, 8192–8198.

    CAS  Google Scholar 

  32. Zhang, C. M.; Nie, Y. H.; Sanvito, S.; Du, A. J. First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett. 2019, 19, 1366–1370.

    CAS  Google Scholar 

  33. Hajra, D.; Sailus, R.; Blei, M.; Yumigeta, K.; Shen, Y. X.; Tongay, S. Epitaxial synthesis of highly oriented 2D Janus Rashba semiconductor BiTeCl and BiTeBr layers. ACS Nano 2020, 14, 15626–15632.

    CAS  Google Scholar 

  34. Ju, L.; Bie, M.; Tang, X.; Shang, J.; Kou, L. Z. Janus WSSe monolayer: An excellent photocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 29335–29343.

    CAS  Google Scholar 

  35. Wan, X.; Chen, E. Z.; Yao, J.; Gao, M. L.; Miao, X.; Wang, S.; Gu, Y. Y.; Xiao, S. Q.; Zhan, R. Z.; Chen, K. et al. Synthesis and characterization of metallic Janus MoSH monolayer. ACS Nano 2021, 15, 20319–20331.

    CAS  Google Scholar 

  36. Fan, Y. C.; Wang, J. R.; Zhao, M. W. Spontaneous full photocatalytic water splitting on 2D MoSe2/SnSe2 and WSe2/SnSe2 vdW heterostructures. Nanoscale 2019, 11, 14836–14843.

    CAS  Google Scholar 

  37. Li, F. P.; Wei, W.; Zhao, P.; Huang, B. B.; Dai, Y. Electronic and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe. J. Phys. Chem. Lett. 2017, 8, 5959–5965.

    CAS  Google Scholar 

  38. McConnell, M. D.; Kraeutler, M. J.; Yang, S.; Composto, R. J. Patchy and multiregion Janus particles with tunable optical properties. Nano Lett. 2010, 10, 603–609.

    CAS  Google Scholar 

  39. Zhao, Y. F.; Shen, Y. H.; Hu, H.; Tong, W. Y.; Duan, C. G. Combined piezoelectricity and ferrovalley properties in Janus monolayer VClBr. Phys. Rev. B 2021, 103, 115124.

    CAS  Google Scholar 

  40. Dong, L.; Lou, J.; Shenoy, V. B. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano 2017, 11, 8242–8248.

    CAS  Google Scholar 

  41. Chen, Y.; Liu, J. Y.; Yu, J. B.; Guo, Y. G.; Sun, Q. Symmetry-breaking induced large piezoelectricity in Janus tellurene materials. Phys. Chem. Chem. Phys. 2019, 21, 1207–1216.

    CAS  Google Scholar 

  42. Trivedi, D. B.; Turgut, G.; Qin, Y.; Sayyad, M. Y.; Hajra, D.; Howell, M.; Liu, L.; Yang, S. J.; Patoary, N. H.; Li, H. et al. Room-temperature synthesis of 2D Janus crystals and their heterostructures. Adv. Mater. 2020, 32, 2006320.

    CAS  Google Scholar 

  43. Liang, J. H.; Wang, W. W.; Du, H. F.; Hallal, A.; Garcia, K.; Chshiev, M.; Fert, A.; Yang, H. X. Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys. Rev. B 2020, 101, 184401.

    CAS  Google Scholar 

  44. Yuan, J. R.; Yang, Y. M.; Cai, Y. Q.; Wu, Y. H.; Chen, Y. P.; Yan, X. H.; Shen, L. Intrinsic skyrmions in monolayer Janus magnets. Phys. Rev. B 2020, 101, 094420.

    CAS  Google Scholar 

  45. Kovács-Krausz, Z.; Hoque, A. M.; Makk, P.; Szentpéteri, B.; Kocsis, M.; Fülöp, B.; Yakushev, M. V.; Kuznetsova, T. V.; Tereshchenko, O. E.; Kokh, K. A. et al. Electrically controlled spin injection from giant Rashba spin-orbit conductor BiTeBr. Nano Lett. 2020, 20, 4782–4791.

    Google Scholar 

  46. Li, S.; Xu, L. F.; Kong, X. G.; Kusunose, T.; Tsurumachi, N.; Feng, Q. Bismuth chalcogenide iodides Bi13S18I2 and BiSI: Solvothermal synthesis, photoelectric behavior, and photovoltaic performance. J. Mater. Chem. C 2020, 8, 3821–3829.

    CAS  Google Scholar 

  47. Ma, Y. D.; Dai, Y.; Wei, W.; Li, X. R.; Huang, B. B. Emergence of electric polarity in BiTeX (X = Br and I) monolayers and the giant Rashba spin splitting. Phys. Chem. Chem. Phys. 2014, 16, 17603–17609.

    CAS  Google Scholar 

  48. Maaß, H.; Bentmann, H.; Seibel, C.; Tusche, C.; Eremeev, S. V.; Peixoto, T. R. F.; Tereshchenko, O. E.; Kokh, K. A.; Chulkov, E. V.; Kirschner, J. et al. Spin-texture inversion in the giant Rashba semiconductor BiTeI. Nat. Commun. 2016, 7, 11621.

    Google Scholar 

  49. Zhang, S. H.; Liu, B. G. Anisotropic Rashba effect and charge and spin currents in monolayer BiTeI by controlling symmetry. Phys. Rev. B 2019, 100, 165429.

    CAS  Google Scholar 

  50. Fülöp, B.; Tajkov, Z.; Pető, J.; Kun, P.; Koltai, J.; Oroszlány, L.; Tóvári, E.; Murakawa, H.; Tokura, Y.; Bordács, S. et al. Exfoliation of single layer BiTeI flakes. 2D Mater. 2018, 5, 031013.

    Google Scholar 

  51. Alpichshev, Z.; Analytis, J. G.; Chu, J. H.; Fisher, I. R.; Chen, Y. L.; Shen, Z. X.; Fang, A.; Kapitulnik, A. STM imaging of electronic waves on the surface of Bi2Te3: Topologically protected surface states and hexagonal warping effects. Phys. Rev. Lett. 2010, 104, 016401.

    Google Scholar 

  52. Ast, C. R.; Henk, J.; Ernst, A.; Moreschini, L.; Falub, M. C.; Pacilé, D.; Bruno, P.; Kern, K.; Grioni, M. Giant spin splitting through surface alloying. Phys. Rev. Lett. 2001, 98, 186807.

    Google Scholar 

  53. Ma, D. S.; Yu, Z. M.; Pan, H.; Yao, Y. G. Trigonal warping induced unusual spin texture and strong spin polarization in graphene with the Rashba effect. Phys. Rev. B 2018, 97, 085416.

    CAS  Google Scholar 

  54. Chen, G. Y.; Huang, A.; Lin, Y. H.; Chen, C. J.; Lin, D. S.; Chang, P. Y.; Jeng, H. T.; Bihlmayer, G.; Hsu, P. J. Orbital-enhanced warping effect in px, py-derived Rashba spin splitting of monatomic bismuth surface alloy. npj Quantum Mater. 2020, 5, 89.

    Google Scholar 

  55. Frantzeskakis, E.; Grioni, M. Anisotropy effects on Rashba and topological insulator spin-polarized surface states: A unified phenomenological description. Phys. Rev. B 2011, 84, 155453.

    Google Scholar 

  56. Fu, L. Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. Phys. Rev. Lett. 2009, 103, 266801.

    Google Scholar 

  57. Premper, J.; Trautmann, M.; Henk, J.; Bruno, P. Spin-orbit splitting in an anisotropic two-dimensional electron gas. Phys. Rev. B 2007, 76, 073310.

    Google Scholar 

  58. Varjovi, M. J.; Durgun, E. First-principles study on structural, vibrational, elastic, piezoelectric, and electronic properties of the Janus BiXY (X = S, Se, Te and Y = F, Cl, Br, I) monolayers. Phys. Rev. Mater. 2021, 5, 104001.

    CAS  Google Scholar 

  59. Henk, J.; Ernst, A.; Bruno, P. Spin polarization of the L-gap surface states on Au(111). Phys. Rev. B 2003, 68, 165416.

    Google Scholar 

  60. Henk, J.; Ernst, A.; Bruno, P. Spin polarization of the L-gap surface states on Au(111): A first-principles investigation. Surf.Sci. 2004, 566–568, 482–485.

    Google Scholar 

  61. Meier, F.; Dil, H.; Lobo-Checa, J.; Patthey, L.; Osterwalder, J. Quantitative vectorial spin analysis in angle-resolved photoemission: Bi/Ag(111) and Pb/Ag(111). Phys. Rev. B 2008, 77, 165431.

    Google Scholar 

  62. Bahramy, M. S.; Yang, B. J.; Arita, R.; Nagaosa, N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun. 2012, 3, 679.

    CAS  Google Scholar 

  63. Efetov, D. K.; Kim, P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 2010, 105, 256805.

    Google Scholar 

  64. Ye, J. T.; Craciun, M. F.; Koshino, M.; Russo, S.; Inoue, S.; Yuan, H. T.; Shimotani, H.; Morpurgo, A. F.; Iwasa, Y. Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. USA 2011, 108, 13002–13006.

    CAS  Google Scholar 

  65. Li, L. J.; O’Farrell, E. C. T.; Loh, K. P.; Eda, G.; Özyilmaz, B.; Castro Neto, A. H. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 2016, 529, 185–189.

    CAS  Google Scholar 

  66. Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W.; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2011, 8, 608.

    Google Scholar 

  67. Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

    CAS  Google Scholar 

  68. Woods, C. R.; Withers, F.; Zhu, M. J.; Cao, Y.; Yu, G.; Kozikov, A.; Ben Shalom, M.; Morozov, S. V.; Van Wijk, M. M.; Fasolino, A. et al. Macroscopic self-reorientation of interacting two-dimensional crystals. Nat. Commun. 2016, 7, 10800.

    CAS  Google Scholar 

  69. Woods, C. R.; Britnell, L.; Eckmann, A.; Ma, R. S.; Lu, J. C.; Guo, H. M.; Lin, X.; Yu, G. L.; Cao, Y.; Gorbachev, R. V. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 2014, 10, 451–456.

    CAS  Google Scholar 

  70. Plechinger, G.; Castellanos-Gomez, A.; Buscema, M.; Van Der Zant, H. S. J.; Steele, G. A.; Kuc, A.; Heine, T.; Schüller, C.; Korn, T. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2015, 2, 015006.

    Google Scholar 

  71. Wang, G. R.; Liu, L. Q.; Dai, Z. H.; Liu, Q.; Miao, H.; Zhang, Z. Biaxial compressive behavior of embedded monolayer graphene inside flexible poly (methyl methacrylate) matrix. Carbon 2015, 86, 69–77.

    CAS  Google Scholar 

  72. Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

    CAS  Google Scholar 

  73. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  74. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  75. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  76. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Google Scholar 

  77. Gmitra, M.; Konschuh, S.; Ertler, C.; Ambrosch-Draxl, C.; Fabian, J. Band-structure topologies of graphene: Spin-orbit coupling effects from first principles. Phys. Rev. B 2009, 80, 235431.

    Google Scholar 

Download references

Acknowledgenents

This study is supported by the National Natural Science Foundation of China (No. 12074218) and the Taishan Scholar Program of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xikui Ma or Mingwen Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Ma, X., Liu, J. et al. Intrinsic spin Hall resonance in Bi-based Janus monolayers. Nano Res. 16, 12626–12632 (2023). https://doi.org/10.1007/s12274-023-5908-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5908-3

Keywords

Navigation