Skip to main content
Log in

Enhanced electrochemical performance of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte by anion doping

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nowadays, the majority of the studies on the substitution are focused on cations (such as Y3+, Ti4+, P5+, etc.) in Li1.3Al0.3Ti1.7(PO4)3 (LATP), while there are few studies on the substitution of anion O2−. In this work, the modified LATP with a series of LiCl (LATPClx, x = 0.1, 0.2, 0.3, 0.4) additives is prepared to enhance ionic conductivity. The successful introduction of Cl makes the length of the c axis decrease from 20.822(2) to 20.792(1) Å, and the bulk conductivity of 2.13 × 10−3 S·cm−1 is achieved in LATPCl0.3. Moreover, the Al/Ti-O1/Cl1 and Al/Ti-O2/Cl2 distance decrease, while the Li1-O2/Cl2 distance increases. Lithium ions migrate more easily in the nanochannel of M3-M1-M3. In addition, the LiCl additive increases the relative density and the grain boundary conductivity of LATPClx compounds. Naturally, a higher ionic conductivity of 2.12 × 10−4 S·cm−1 and a low activation energy of 0.30 eV are obtained in LATPCl0.3. Correspondingly, the symmetric cell exhibits a low overpotential of ±50 mV for over 200 h in LATPCl0.3. The solid-state Li∣LATPCl0.3∣NCM811 (NCM811 = LiNi0.8Co0.1Mn0.1O2) battery exhibits high initial capacity 185.1 mAh·g−1 with a capacity retention rate of 95.4% after 100 cycles at 0.5 C. This result suggests that LiCl additive is an effective strategy to promote electrochemical properties of LATP solid electrolyte and can be considered for reference to other inorganic solid electrolytes systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

    Article  ADS  PubMed  Google Scholar 

  2. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  3. Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

    Article  CAS  PubMed  Google Scholar 

  4. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

    Article  CAS  PubMed  Google Scholar 

  5. Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.

    Article  CAS  Google Scholar 

  6. Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res., in press, https://doi.org/10.1007/s12274-023-5478-4.

  7. Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

    Article  CAS  Google Scholar 

  8. Li, Q.; Sun, X.; Cao, D. X.; Wang, Y.; Luan, P. C.; Zhu, H. L. Versatile electrospinning for structural designs and ionic conductor orientation in all-solid-state lithium batteries. Electrochem. Energy Rev. 2022, 5, 18.

    Article  Google Scholar 

  9. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  10. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    Article  CAS  Google Scholar 

  11. Xiao, W.; Wang, J. Y.; Fan, L. L.; Zhang, J. J.; Li, X. F. Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Mater. 2019, 19, 379–400.

    Article  Google Scholar 

  12. Zhang, P.; Wang, H.; Lee, Y. G.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Tape-cast water-stable NASICON-type high lithium ion conducting solid electrolyte films for aqueous lithium-air batteries. J. Electrochem. Soc. 2015, 162, A1265–A1271.

    Article  CAS  Google Scholar 

  13. Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano 2023, 17, 1653–1662.

    Article  CAS  Google Scholar 

  14. Singh, M. D.; Dalvi, A.; Phase, D. M.; Kumar, Y. Li1.3Al0.3Ti1.7(PO4)3 reinforced hybrid polymer composites: Assessment of enhanced Li+ ion transport and potential for solidstate supercapacitor applications. J. Mater. Sci. 2020, 55, 3951–3963.

    Article  ADS  Google Scholar 

  15. Monchak, M.; Hupfer, T.; Senyshyn, A.; Boysen, H.; Chernyshov, D.; Hansen, T.; Schell, K. G.; Bucharsky, E. C.; Hoffmann, M. J.; Ehrenberg, H. Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor. Inorg. Chem. 2016, 55, 2941–2945.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

    Article  ADS  CAS  Google Scholar 

  17. Qian, H. M.; Ren, H. Q.; Zhang, Y.; He, X. F.; Li, W. B.; Wang, J. J.; Hu, J. H.; Yang, H.; Sari, H. M. K.; Chen, Y. et al. Surface doping vs. bulk doping of cathode materials for lithium-ion batteries: A review. Electrochem. Energy Rev. 2022, 5, 2.

    Article  CAS  Google Scholar 

  18. Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for highperformance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

    Article  CAS  Google Scholar 

  19. Zhang, S. N.; Sun, Q.; Hou, G. M.; Cheng, J.; Dai, L. N.; Li, J. W.; Ci, L. J. Boosting fast interfacial Li+ transport in solid-state Li metal batteries via ultrathin Al buffer layer. Nano Res. 2023, 16, 6825–6832.

    Article  ADS  CAS  Google Scholar 

  20. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of singleatom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  21. Rosenberger, A.; Gao, Y.; Stanciu, L. Field-assisted sintering of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte. Solid State Ionics 2015, 278, 217–221.

    Article  CAS  Google Scholar 

  22. Zhao, E. Q.; Ma, F. R.; Guo, Y. D.; Jin, Y. C. Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries. RSC Adv. 2016, 6, 92579–92585.

    Article  ADS  CAS  Google Scholar 

  23. Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Ślubowska, W.; Montagne, L.; Lafon, O.; Méar, F.; Kwatek, K. B2O3-doped LATP glass-ceramics studied by X-ray diffractometry and MAS NMR spectroscopy methods. Nanomaterials 2021, 11, 390.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lu, P. S.; Wu, D. X.; Chen, L. Q.; Li, H.; Wu, F. Air stability of solid-state sulfide batteries and electrolytes. Electrochem. Energy Rev. 2022, 5, 3.

    Article  CAS  Google Scholar 

  26. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    Article  CAS  Google Scholar 

  27. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A highentropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    Article  CAS  Google Scholar 

  28. Fan, M. X.; Deng, X. Y.; Zheng, A. Q.; Yuan, S. D. Solvothermal synthesis high lithium ionic conductivity of Gd-doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Funct. Mater. Lett. 2021, 14, 2140002.

    Article  ADS  CAS  Google Scholar 

  29. Kothari, D. H.; Kanchan, D. K. Inter-grain Li+ conduction in Sc and Y doped LATP compounds. Phys. B: Condens. Matter 2022, 627, 413599.

    Article  CAS  Google Scholar 

  30. Zhu, J. P.; Xiang, Y. X.; Zhao, J.; Wang, H. C.; Li, Y. X.; Zheng, B. Z.; He, H. J.; Zhang, Z. R.; Huang, J. Y.; Yang, Y. Insights into the local structure, microstructure and ionic conductivity of silicon doped NASICON-type solid electrolyte Li1.3Al0.3Ti1.7P3O12. Energy Storage Mater. 2022, 44, 190–196.

    Article  Google Scholar 

  31. Wang, Q. H.; Liu, L.; Zhao, B. J.; Zhang, L.; Xiao, X.; Yan, H.; Xu, G. L.; Ma, L.; Liu, Y. Transport and interface characteristics of Te-doped NASICON solid electrolyte Li1.3Al0.3Ti1.7(PO4)3. Electrochim. Acta 2021, 399, 139367.

    Article  CAS  Google Scholar 

  32. Cai, Z. H.; Huang, Y.; Zhu, W. C.; Xiao, R. G. Increase in ionic conductivity of NASICON-type solid electrolyte Li1.5Al0.5Ti1.5(PO4)3 by Nb2O5 doping. Solid State Ionics 2020, 354, 115399.

    Article  CAS  Google Scholar 

  33. Kızılaslan, A.; Kırkbınar, M.; Cetinkaya, T.; Akbulut, H. Sulfur doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes with enhanced ionic conductivity and a reduced activation energy barrier. Phys. Chem. Chem. Phys. 2020, 22, 17221–17228.

    Article  PubMed  Google Scholar 

  34. Shen, K.; Cao, Z. J.; Shi, Y. Z.; Zhang, Y. Z.; Li, B.; Yang, S. B. 3D printing lithium salt towards dendrite-free lithium anodes. Energy Storage Mater 2021, 35, 108–113.

    Article  Google Scholar 

  35. Kwatek, K.; Ślubowska, W.; Trébosc, J.; Lafon, O.; Nowiński, J. L. Structural and electrical properties of ceramic Li-ion conductors based on Li1.3Al0.3Ti1.7(PO4)3-LiF. J. Eur. Ceram. Soc. 2020, 40, 85–93.

    Article  CAS  Google Scholar 

  36. Xiong, L. L.; Ren, Z. H.; Xu, Y. L.; Mao, S. C.; Lei, P.; Sun, M. T. LiF assisted synthesis of LiTi2(PO4)3 solid electrolyte with enhanced ionic conductivity. Solid State Ionics 2017, 309, 22–26.

    Article  CAS  Google Scholar 

  37. Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. Y. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 1990, 137, 1023–1027.

    Article  ADS  CAS  Google Scholar 

  38. Hupfer, T.; Bucharsky, E. C.; Schell, K. G.; Senyshyn, A.; Monchak, M.; Hoffmann, M. J.; Ehrenberg, H. Evolution of microstructure and its relation to ionic conductivity in Li1+xAlxTi2−x(PO4)3. Solid State Ionics 2016, 288, 235–239.

    Article  CAS  Google Scholar 

  39. Arbi, K.; Hoelzel, M.; Kuhn, A.; García-Alvarado, F.; Sanz, J. Local structure and lithium mobility in intercalated Li3AlxTi2−x(PO4)3 NASICON type materials: A combined neutron diffraction and NMR study. Phys. Chem. Chem. Phys. 2014, 16, 18397–18405.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, B. K.; Lin, Z.; Dong, H. F.; Wang, L. W.; Pan, F. Revealing cooperative Li-ion migration in Li1+xAlxTi2−x(PO4)3 solid state electrolytes with high Al doping. J. Mater. Chem. A 2020, 8, 342–348.

    Article  CAS  Google Scholar 

  41. Nakamura, M.; Song, M. B.; Ito, M. Hydrogen bonding between a water molecule and electronegative additives (O or Cl) on a Pt(111) surface. Chem. Phys. Lett. 2000, 320, 381–386.

    Article  ADS  CAS  Google Scholar 

  42. Li, S. Y.; Huang, Z. Y.; Xiao, Y. G.; Sun, C. W. Chlorine-doped Li1.3Al0.3Ti1.7(PO4)3 as an electrolyte for solid lithium metal batteries. Mater. Chem. Front. 2021, 5, 5336–5343.

    Article  CAS  Google Scholar 

  43. Zhang, B. K.; Tan, R.; Yang, L. Y.; Zheng, J. X.; Zhang, K. C.; Mo, S. J.; Lin, Z.; Pan, F. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Mater. 2018, 10, 139–159.

    Article  Google Scholar 

  44. Ślubowska, W.; Kwatek, K.; Jastrzębski, C.; Nowiński, J. L. Thermal, structural and electrical study of boron-incorporated LATP glasses and glass-ceramics. Solid State Ionics 2019, 335, 129–134.

    Article  Google Scholar 

  45. Liu, Y.; Bai, Q.; Nolan, A. M.; Zhou, Y. N.; Wang, Y. G.; Mo, Y. F.; Xia, Y. Y. Lithium ion storage in lithium titanium germanate. Nano Energy 2019, 66, 104094.

    Article  CAS  Google Scholar 

  46. Dashjav, E.; Ma, Q. L.; Xu, Q.; Tsai, C. L.; Giarola, M.; Mariotto, G.; Tietz, F. The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates. Solid State Ionics 2018, 321, 83–90.

    Article  CAS  Google Scholar 

  47. Huang, Y.; Jiang, Y.; Zhou, Y. X.; Hu, Z. W.; Zhu, X. H. Influence of liquid solutions on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes. ChemElectroChem 2019, 6, 6016–6026.

    Article  CAS  Google Scholar 

  48. Golosov, O. A.; Khvostov, S. S.; Glushkova, N. V.; Evseev, M. V.; Staritsyn, S. V.; Zaikov, Y. P.; Kovrov, V. A.; Nikitina, E. V.; Kholkina, A. S.; Kazakovtseva, N. A. et al. Corrosive and mechanical resistance of MgO ceramics under metallizing and mild chlorination of spent nuclear fuel in molten salts. Ceram. Int. 2021, 47, 3306–3311.

    Article  CAS  Google Scholar 

  49. Dai, L. J.; Wang, J.; Shi, Z. X.; Yu, L. N.; Shi, J. Influence of LiBF4 sintering aid on the microstructure and conductivity of LATP solid electrolyte. Ceram. Int. 2021, 47, 11662–11667.

    Article  CAS  Google Scholar 

  50. Krasnikova, I. V.; Pogosova, M. A.; Sanin, A. O.; Stevenson, K. J. Toward standardization of electrochemical impedance spectroscopy studies of Li-ion conductive ceramics. Chem. Mater. 2020, 32, 2232–2241.

    Article  CAS  Google Scholar 

  51. Yen, P. Y.; Lee, M. L.; Gregory, D. H.; Liu, W. R. Optimization of sintering process on Li1+xAlxTi2−xPO4)3 solid electrolytes for all-solid-state lithium-ion batteries. Ceram. Int. 2020, 46, 20529–20536.

    Article  CAS  Google Scholar 

  52. Lee, K. C.; Chang-Jian, C. W.; Ho, B. C.; Ding, Y. R.; Huang, J. H.; Hsiao, Y. S. Conductive PProDOT-Me2-capped Li4Ti5O12 microspheres with an optimized Ti3+/Ti4+ ratio for enhanced and rapid lithium-ion storage. Ceram. Int. 2019, 45, 15252–15261.

    Article  CAS  Google Scholar 

  53. Yu, K.; Tian, Y.; Gu, R.; Jin, L.; Ma, R. P.; Sun, H. C.; Xu, Y. L.; Xu, Z.; Wei, X. Y. Ionic conduction, colossal permittivity and dielectric relaxation behavior of solid electrolyte Li3xLa2/3−xTiO3 ceramics. J. Eur. Ceram. Soc. 2018, 38, 4483–4487.

    Article  CAS  Google Scholar 

  54. Chen, D.; Yang, J. L.; Zhou, Y. Y.; Xie, H.; Zhang, H. H.; Lai, H. R. Divalent-doped Li1.3Al0.3Ti1.7(PO4)3 ceramics with enhanced microwave absorption properties in the X-band. J. Electron. Mater. 2022, 51, 2663–2672.

    Article  ADS  CAS  Google Scholar 

  55. Liu, C.; Wang, H. R.; Long, T.; Ma, Q.; Ning, P.; Dong, X. R.; Zhou, C. S.; Wu, X. W.; Zeng, X. X. Borosilicate glass-enabled antifracture NASICON solid electrolytes for lithium-metal batteries. ACS Appl. Energy Mater. 2022, 5, 3734–3740.

    Article  CAS  Google Scholar 

  56. Feng, W. L.; Yang, P.; Dong, X. L.; Xia, Y. Y. A low temperature soldered all ceramic lithium battery. ACS Appl. Mater. Interfaces 2022, 14, 1149–1156.

    Article  CAS  PubMed  Google Scholar 

  57. Kang, J. R.; Gu, R.; Guo, X.; Li, J.; Sun, H. C.; Zhang, L. Y.; Jing, R. Y.; Jin, L.; Wei, X. Y. Effect of SnO-P2O5-MgO glass addition on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Ceram. Int. 2022, 48, 157–163.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 51772239, 51972262 and 22005186) and the 111 Project (No. B14040). The SEM work was done at the International Center for Dielectric Research (ICDR), Xi’an Jiaotong University, Xi’an, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongfei Li or Xiaoyong Wei.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Guo, X., Gu, R. et al. Enhanced electrochemical performance of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte by anion doping. Nano Res. 17, 1465–1472 (2024). https://doi.org/10.1007/s12274-023-5890-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5890-9

Keywords

Navigation