Skip to main content
Log in

Biomimetic chitin hydrogel via chemical transformation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chitin hydrogel has been recognized as a promising material for various biomedical applications because of its biocompatibility and biodegradability. However, the fabrication of strong chitin hydrogel remains a big challenge because of the insolubility of chitin in many solvents and the reduced chain length of chitin regenerated from solutions. We herein introduce the fabrication of chitin hydrogel with biomimetic structure through the chemical transformation of chitosan, which is a water-soluble deacetylated derivative of chitin. The reacetylation of the amino group in chitosan endows the obtained chitin hydrogel with outstanding resistance to swelling, degradation, extreme temperature and pH conditions, and organic solvents. The chitin hydrogel has excellent mechanical properties while retaining a high water content (more than 95 wt.%). It also shows excellent antifouling performance that it resists the adhesion of proteins, bacteria, blood, and cells. Moreover, as the initial chitosan solution can be feasibly frozen and templated by ice crystals, the chitin hydrogel structure can be either nacre-like or wood-like depending on the freezing method of the precursory chitosan solution. Owing to these anisotropic structures, such chitin hydrogel can exhibit anisotropic mechanics and mass transfer capabilities. The current work provides a rational strategy to fabricate chitin hydrogels and paves the way for its practical applications as a superior biomedical material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, X. H.; Chen, X. Y.; Yuk, H.; Lin, S. T.; Liu, X. Y.; Parada, G. Soft materials by design: Unconventional polymer networks give extreme properties. Chem. Rev. 2021, 121, 4309–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vernerey, F. J.; Lalitha Sridhar, S.; Muralidharan, A.; Bryant, S. J. Mechanics of 3D cell-hydrogel interactions: Experiments, models, and mechanisms. Chem. Rev. 2021, 121, 11085–11148.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, Y.; Song, S. L.; Ren, X. Z.; Zhang, J. M.; Lin, Q.; Zhao, Y. L. Supramolecular adhesive hydrogels for tissue engineering applications. Chem. Rev. 2022, 122, 5604–5640.

    Article  CAS  PubMed  Google Scholar 

  4. Torres-Rendon, J. G.; Femmer, T.; De Laporte, L.; Tigges, T.; Rahimi, K.; Gremse, F.; Zafarnia, S.; Lederle, W.; Ifuku, S.; Wessling, M. et al. Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering. Adv. Mater. 2015, 27, 2989–2995.

    Article  CAS  PubMed  Google Scholar 

  5. Silva, S. S.; Mano, J. F.; Reis, R. L. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem. 2017, 19, 1208–1220.

    Article  CAS  Google Scholar 

  6. Xue, K.; Wang, X. Y.; Yong, P. W.; Young, D. J.; Wu, Y. L.; Li, Z. B.; Loh, X. J. Hydrogels as emerging materials for translational biomedicine. Adv. Therap. 2019, 2, 1800088.

    Article  Google Scholar 

  7. Montazerian, H.; Davoodi, E.; Baidya, A.; Baghdasarian, S.; Sarikhani, E.; Meyer, C. E.; Haghniaz, R.; Badv, M.; Annabi, N.; Khademhosseini, A. et al. Engineered hemostatic biomaterials for sealing wounds. Chem. Rev. 2022, 122, 12864–12903.

    Article  CAS  PubMed  Google Scholar 

  8. Fuchs, S.; Ernst, A. U.; Wang, L. H.; Shariati, K.; Wang, X.; Liu, Q. S.; Ma, M. L. Hydrogels in emerging technologies for type 1 diabetes. Chem. Rev. 2021, 121, 11458–11526.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, H. T.; Wang, Y. Q.; Cui, K. L.; Guo, Y. Q.; Zhang, X.; Qin, J. H. Advances in hydrogels in organoids and organs-on-a-chip. Adv. Mater. 2019, 31, 1902042.

    Article  CAS  Google Scholar 

  10. Liu, J.; Lin, S. T.; Liu, X. Y.; Qin, Z.; Yang, Y. Y.; Zang, J. F.; Zhao, X. H. Fatigue-resistant adhesion of hydrogels. Nat. Commun. 2020, 11, 1071.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Yang, H.; Ji, M. K.; Yang, M.; Shi, M. X. Z.; Pan, Y. D.; Zhou, Y. F.; Qi, H. J.; Suo, Z. G.; Tang, J. D. Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance. Matter 2021, 4, 1935–1946.

    Article  CAS  Google Scholar 

  12. Hua, M. T.; Wu, S. W.; Ma, Y. F.; Zhao, Y. S.; Chen, Z. L.; Frenkel, I.; Strzalka, J.; Zhou, H.; Zhu, X. Y.; He, X. M. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 2021, 590, 594–599.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Yang, R. H.; Li, G.; Zhuang, C. Y.; Yu, P.; Ye, T. J.; Zhang, Y.; Shang, P. Y.; Huang, J. J.; Cai, M.; Wang, L. et al. Gradient bimetallic ion-based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci. Adv. 2021, 7, eabg3816.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Campea, M. A.; Majcher, M. J.; Lofts, A.; Hoare, T. A review of design and fabrication methods for nanoparticle network hydrogels for biomedical, environmental, and industrial applications. Adv. Funct. Mater. 2021, 31, 2102355.

    Article  CAS  Google Scholar 

  15. Jiang, L. B.; Su, D. H.; Ding, S. L.; Zhang, Q. C.; Li, Z. F.; Chen, F. C.; Ding, W.; Zhang, S. T.; Dong, J. Salt-assisted toughening of protein hydrogel with controlled degradation for bone regeneration. Adv. Funct. Mater. 2019, 29, 1901314.

    Article  Google Scholar 

  16. Ma, P. Q.; Chen, Y.; Lai, X. Y.; Zheng, J.; Ye, E. Y.; Loh, X. J.; Zhao, Y.; Parikh, B. H.; Su, X. Y.; You, M. L. et al. The translational application of hydrogel for organoid technology: Challenges and future perspectives. Macromol. Biosci. 2021, 21, 2100191.

    Article  CAS  Google Scholar 

  17. Yang, J. P.; Xue, B.; Zhou, Y. Y.; Qin, M.; Wang, W.; Cao, Y. Spraypainted hydrogel coating for marine antifouling. Adv. Mater. Technol. 2021, 6, 2000911.

    Article  CAS  Google Scholar 

  18. Wen, C. Y.; Guo, H. S.; Yang, J.; Li, Q. S.; Zhang, X. Y.; Sui, X.; Cao, M. Y.; Zhang, L. Zwitterionic hydrogel coated superhydrophilic hierarchical antifouling floater enables unimpeded interfacial steam generation and multi-contamination resistance in complex conditions. Chem. Eng. J. 2021, 421, 130344.

    Article  CAS  Google Scholar 

  19. Wang, H. B.; Wu, Y. H.; Cui, C. Y.; Yang, J. H.; Liu, W. G. Antifouling super water absorbent supramolecular polymer hydrogel as an artificial vitreous body. Adv. Sci. 2018, 5, 1800711.

    Article  Google Scholar 

  20. Huang, T.; Liu, H. W.; Liu, P. M.; Liu, P. S.; Li, L.; Shen, J. Zwitterionic copolymers bearing phosphonate or phosphonic motifs as novel metal-anchorable anti-fouling coatings. J. Mater. Chem. B 2017, 5, 5380–5389.

    Article  CAS  PubMed  Google Scholar 

  21. Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S. L.; Mutton, R.; Clare, A. S.; Wang, S.; Liu, Y. L.; Zhao, Q.; D’Souza, F. et al. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules 2008, 9, 2775–2783.

    Article  CAS  PubMed  Google Scholar 

  22. Chan, D.; Chien, J. C.; Axpe, E.; Blankemeier, L.; Baker, S. W.; Swaminathan, S.; Piunova, V. A.; Zubarev, D. Y.; Maikawa, C. L.; Grosskopf, A. K. et al. Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors. Adv. Mater. 2022, 34, 2109764.

    Article  CAS  Google Scholar 

  23. Buzzacchera, I.; Vorobii, M.; Kostina, N. Y.; de Los Santos Pereira, A.; Riedel, T.; Bruns, M.; Ogieglo, W.; Möller, M.; Wilson, C. J.; Rodriguez-Emmenegger, C. Polymer brush-functionalized chitosan hydrogels as antifouling implant coatings. Biomacromolecules 2017, 18, 1983–1992.

    Article  CAS  PubMed  Google Scholar 

  24. Muir, V. G.; Burdick, J. A. Chemically modified biopolymers for the formation of biomedical hydrogels. Chem. Rev. 2021, 121, 10908–10949.

    Article  CAS  PubMed  Google Scholar 

  25. Li, Y.; Xue, B.; Cao, Y. 100th anniversary of macromolecular science viewpoint: Synthetic protein hydrogels. ACS Macro. Lett. 2020, 9, 512–524.

    Article  CAS  PubMed  Google Scholar 

  26. He, Q. Y.; Huang, Y.; Wang, S. Y. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 2018, 28, 1705069.

    Article  Google Scholar 

  27. Zhu, Z. H.; Ling, S. J.; Yeo, J.; Zhao, S. W.; Tozzi, L.; Buehler, M. J.; Omenetto, F.; Li, C. M.; Kaplan, D. L. High-strength, durable allsilk fibroin hydrogels with versatile processability toward multifunctional applications. Adv. Funct. Mater. 2018, 28, 1704757.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zheng, H. Y.; Zuo, B. Q. Functional silk fibroin hydrogels: Preparation, properties, and applications. J. Mater. Chem. B 2021, 9, 1238–1258.

    Article  CAS  PubMed  Google Scholar 

  29. Yao, X.; Zou, S. Z.; Fan, S. N.; Niu, Q. Q.; Zhang, Y. P. Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications. Mater. Today Bio 2022, 16, 100381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, Q. H.; Torres, J. E.; Hakim, M.; Babiak, P. M.; Pal, P.; Battistoni, C. M.; Nguyen, M.; Panitch, A.; Solorio, L.; Liu, J. C. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. R Rep. 2021, 146, 100641.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bai, L.; Liu, L.; Esquivel, M.; Tardy, B. L.; Huan, S. Q.; Niu, X.; Liu, S. X.; Yang, G. H.; Fan, Y. M.; Rojas, O. J. Nanochitin: Chemistry, structure, assembly, and applications. Chem. Rev. 2022, 122, 11604–11674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pillai, C. K. S.; Paul, W.; Sharma, C. P. Chitin and chitosan polymers: Chemistry, solubility, and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678.

    Article  CAS  Google Scholar 

  33. Shen, X. P.; Shamshina, J. L.; Berton, P.; Gurau, G.; Rogers, R. D. Hydrogels based on cellulose and chitin: Fabrication, properties, and applications. Green Chem. 2016, 18, 53–75.

    Article  Google Scholar 

  34. Yang, Y. W.; Zhang, S. C.; Bian, X. E.; Xia, T.; Lu, A.; Zhang, L. N.; Wang, Y. F.; Duan, B. In situ exfoliated silk fibroin nanoribbons enhanced chitin hydrogel for bile duct restoration. Chem. Eng. J. 2021, 422, 130088.

    Article  CAS  Google Scholar 

  35. Yu, N. X.; Wang, X. Y.; Qiu, L.; Cai, T. M.; Jiang, C. J.; Sun, Y.; Li, Y. B.; Peng, H. L.; Xiong, H. Bacteria-triggered hyaluronan/AgNPs/gentamicin nanocarrier for synergistic bacteria disinfection and wound healing application. Chem. Eng. J. 2020, 380, 122582.

    Article  CAS  Google Scholar 

  36. Fang, Y.; Duan, B.; Lu, A.; Liu, M. L.; Liu, H. L.; Xu, X. J.; Zhang, L. N. Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution. Biomacromolecules 2015, 16, 1410–1417.

    Article  CAS  PubMed  Google Scholar 

  37. Xu, D. D.; Huang, J. C.; Zhao, D.; Ding, B. B.; Zhang, L. N.; Cai, J. High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings. Adv. Mater. 2016, 28, 5844–5849.

    Article  CAS  PubMed  Google Scholar 

  38. Bi, S. C.; Li, F.; Qin, D.; Wang, M. Y.; Yuan, S. P.; Cheng, X. J.; Chen, X. G. Construction of chitin functional materials based on a “green” alkali/urea solvent and their applications in biomedicine: Recent advance. Appl. Mater. Today. 2021, 23, 101030.

    Article  Google Scholar 

  39. Wang, J.; Yuan, B.; Han, R. P. S. Modulus of elasticity of randomly and aligned polymeric scaffolds with fiber size dependency. J. Mech. Behav. Biomed. Mater. 2018, 77, 314–320.

    Article  CAS  PubMed  Google Scholar 

  40. Tian, B. R.; Hua, S. Y.; Tian, Y.; Liu, J. Y. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: A review. J. Mater. Chem. B 2020, 8, 10050–10064.

    Article  CAS  PubMed  Google Scholar 

  41. Park, B.; Shin, J. H.; Ok, J.; Park, S.; Jung, W.; Jeong, C.; Choy, S.; Jo, Y. J.; Kim, T. I. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science 2022, 376, 624–629.

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Cui, Z. K.; Kim, S.; Baljon, J. J.; Wu, B. M.; Aghaloo, T.; Lee, M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat. Commun. 2019, 10, 3523.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  43. Zhou, L. Y.; Ramezani, H.; Sun, M.; Xie, M. J.; Nie, J.; Lv, S.; Cai, J.; Fu, J. Z.; He, Y. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Biomater. Sci. 2020, 8, 5020–5028.

    Article  PubMed  Google Scholar 

  44. Jiao, J.; Huang, J. J.; Zhang, Z. J. Hydrogels based on chitosan in tissue regeneration: How do they work? A mini review. J. Appl. Polym. Sci. 2019, 136, 47235.

    Article  Google Scholar 

  45. Hamedi, H.; Moradi, S.; Hudson, S. M.; Tonelli, A. E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym. 2018, 199, 445–460.

    Article  CAS  PubMed  Google Scholar 

  46. Fu, J.; Yang, F. C.; Guo, Z. G. The chitosan hydrogels: From structure to function. New J. Chem. 2018, 42, 17162–17180.

    Article  CAS  Google Scholar 

  47. Triunfo, M.; Tafi, E.; Guarnieri, A.; Salvia, R.; Scieuzo, C.; Hahn, T.; Zibek, S.; Gagliardini, A.; Panariello, L.; Coltelli, M. B. et al. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci. Rep. 2022, 12, 6613.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Dimzon, I. K. D.; Knepper, T. P. Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares. Int. J. Biol. Macromol. 2015, 72, 939–945.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, R. N.; Liu, Y. N.; He, M. R.; Su, Y. L.; Zhao, X. T.; Elimelech, M.; Jiang, Z. Y. Antifouling membranes for sustainable water purification: Strategies and mechanisms. Chem. Soc. Rev. 2016, 45, 5888–5924.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2018YFE0202201 and 2021YFA0715700), the National Natural Science Foundation of China (Nos. 21701161 and 22293044), and the Key Scientific Research Foundation of the Education Department of Anhui Province (No. 2022AH050702). This work was partially carried out at the USTC Center for Micro- and Nanoscale Research and Fabrication. The authors thank Dr. Rundong Wang and Prof. Binghong Zhan from Beijing Institute of Fashion Technology for their assistance in visualizing the scheme of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhou, Li-Bo Mao or Shu-Hong Yu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, RR., Shi, QQ., Meng, YF. et al. Biomimetic chitin hydrogel via chemical transformation. Nano Res. 17, 771–777 (2024). https://doi.org/10.1007/s12274-023-5886-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5886-5

Keywords

Navigation