Skip to main content
Log in

Role of electrodes in study of hydrovoltaic effects

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The last decade has witnessed the emergence of hydrovoltaic technology, which can harvest electricity from different forms of water movement, such as raindrops, waves, flows, moisture, and natural evaporation. In particular, the evaporation-induced hydrovoltaic effect received great attention since its discovery in 2017 due to its negative heat emission property. Nevertheless, the influence of electrode reactions in evaporation-induced power generation is not negligible due to the chemical reaction between active metal electrodes and water, which leads to “exceptional” power generation. Herein, we designed a series of experiments based on air-laid paper devices with electrodes of different activities as the top and bottom electrodes. To verify the contribution of electrodes, we compared the output performance of different electrode combinations when the device was partially-wetted and fully-wetted. The device hydrophilicity, salt concentration, and acidity or basicity of solutions were also comprehensively investigated. It is demonstrated that the chemical reaction of active metals (Zn, Cu, Ag, etc.) with different aqueous solutions can generate considerable electrical energy and significantly distort the device performance, especially for Zn electrodes with an output voltage from ~ 1.26 to ~ 1.52 V and current from ~ 1.24 to ~ 75.69 µA. To promote the long-term development of hydrovoltaic technology, we recommend use of inert electrodes in hydrovoltaic studies, such as Au and Pt, especially in water and moisture environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin, J.; Zhou, J. X.; Fang, S. M.; Guo, W. L. Hydrovoltaic energy on the way. Joule 2020, 4, 1852–1855.

    Article  Google Scholar 

  2. Zhang, Z. H.; Li, X. M.; Yin, J.; Xu, Y.; Fei, W. W.; Xue, M. M.; Wang, Q.; Zhou, J. X.; Guo, W. L. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109–1119.

    Article  CAS  Google Scholar 

  3. Shen, D. Z.; Duley, W. W.; Peng, P.; Xiao, M.; Feng, J. Y.; Liu, L.; Zou, G. S.; Zhou, Y. N. Moisture-enabled electricity generation: From physics and materials to self-powered applications. Adv. Mater. 2020, 32, 2003722.

    Article  Google Scholar 

  4. Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

    Article  CAS  Google Scholar 

  5. Ding, T. P.; Liu, K.; Li, J.; Xue, G. B.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Add. Funct. Mater. 2017, 27, 1700551.

    Article  Google Scholar 

  6. Wang, X. F.; Lin, F. R.; Wang, X.; Fang, S. M.; Tan, J.; Chu, W. C.; Rong, R.; Yin, J.; Zhang, Z. H.; Liu, Y. P. et al. Hydrovoltaic technology: From mechanism to applications. Chem. Soc. Red. 2022, 51, 4902–4927.

    Article  CAS  Google Scholar 

  7. Zheng, C. X.; Chu, W. C.; Fang, S. M.; Tan, J.; Wang, X. F.; Guo, W. L. Materials for evaporation-driven hydrovoltaic technology. Int. Mater. 2022, 1, 449–470.

    Google Scholar 

  8. Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

    Article  CAS  Google Scholar 

  9. Fang, S. M.; Li, J. D.; Xu, Y.; Shen, C.; Guo, W. L. Evaporating potential. Joule 2022, 6, 690–701.

    Article  Google Scholar 

  10. Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Red. 2012, 41, 2172–2192.

    Article  CAS  Google Scholar 

  11. Li, L. H.; Gao, S. W.; Hao, M. M.; Yang, X. Q.; Feng, S. J.; Li, L. L.; Wang, S. Q.; Xiong, Z. P.; Sun, F. Q.; Li, Y. et al. A novel, flexible dual-mode power generator adapted for wide dynamic range of the aqueous salinity. Nano Energy 2021, 85, 105970.

    Article  CAS  Google Scholar 

  12. Zhang, K.; Cai, L.; Nilghaz, A.; Chen, G. X.; Wan, X. F.; Tian, J. F. Enhancing output performance of surface-modified wood sponge-carbon black ink hygroelectric generator via moisture-triggered galvanic cell. Nano Energy 2022, 98, 107288.

    Article  CAS  Google Scholar 

  13. Tabrizizadeh, T.; She, Z.; Stamplecoskie, K.; Liu, G. J. Empowerment of water-evaporation-induced electric generators via the use of metal electrodes. ACS Omega 2022, 7, 28275–28283.

    Article  CAS  Google Scholar 

  14. Li, L. H.; Hao, M. M.; Yang, X. Q. Sun, F. Q.; Bai, Y. Y.; Ding, H. Y.; Wang, S. Q.; Zhang, T. Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics. Nano Energy 2020, 72, 104663.

    Article  CAS  Google Scholar 

  15. Li, Y.; Zhang, L. B.; Li, J.; Lian, X. X.; Zhu, J. W. Crystallization characteristics of zinc oxide under electric field and Raman spectrum analysis of polarized products. Acta Phys. Sin. 2019, 68, 070701.

    Article  Google Scholar 

  16. Cao, C.; Xie, X. X.; Zeng, Y. M.; Shi, S. H.; Wang, G. Z.; Yang, L.; Wang, C. Z.; Lin, S. W. Highly efficient and stable p-type ZnO nanowires with piezotronic effect for photoelectrochemical water splitting. Nano Energy 2019, 61, 550–558.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National and Jiangsu Province NSF (Nos. T2293691 and BK20212008) of China, National Key Research and Development Program of China (No. 2019YFA0705400), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (No. MCMS-I-0422K01), the Fundamental Research Funds for the Central Universities (No. NJ2022002), and the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Guo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Fang, S., Chu, W. et al. Role of electrodes in study of hydrovoltaic effects. Nano Res. 16, 11320–11325 (2023). https://doi.org/10.1007/s12274-023-5881-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5881-x

Keywords

Navigation