Skip to main content
Log in

Gradient CNT/PVDF piezoelectric composite with enhanced force-electric coupling for soccer training

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Real-time monitoring of ball–shoe interactions can provide essential information for high-quality instruction in personalized soccer training, yet existing monitoring systems struggle to reflect specific forces, loci, and durations of action. Here, we design a self-powered piezoelectric sensor constructed by the gradient carbon nanotube/polyvinylidene fluoride (CNT/PVDF) composite to monitor the interactions between the ball and the shoe. Two-dimensional Raman mapping demonstrates the gradient structure of CNT/PVDF prepared by programmable electrospinning combined with a hot pressing. Benefitting from the synergistic effect of local polarization caused by the enrichment of CNT and the reduced diffusion of silver patterns in gradient structure, the as-prepared composite exhibits enhanced force-electric coupling with an excellent sensitivity of 80 mV/N and durability over 15,000 cycles. On this basis, we conformally attach a 3 × 3 sensor array to a soccer shoe, enabling real-time acquisition of kick position and contact force, which could provide quantitative assessment and personalize guidance for the training of soccer players. This self-powered piezoelectric sensor network system offers a promising paradigm for wearable monitoring under strong impact forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garrido, D.; Burriel, B.; Resta, R.; Del Campo, R. L.; Buldú, J. M. Heatmaps in soccer: Event vs tracking datasets. Chaos, Solitons Fract. 2022, 165, 112827.

    Google Scholar 

  2. Baysal, S.; Duygulu, P. Sentioscope: A soccer player tracking system using model field particles. IEEE Trans. Circ. Syst. Video Technol. 2016, 26, 1350–1362.

    Google Scholar 

  3. Cano, P.; Ruiz-del-Solar, J. Robust tracking of soccer robots using random finite sets. IEEE Intell. Syst. 2017, 32, 22–29.

    Google Scholar 

  4. Gao, Y. Y.; Yan, C.; Huang, H. C.; Yang, T.; Tian, G.; Xiong, D.; Chen, N. J.; Chu, X.; Zhong, S.; Deng, W. L. et al. Microchannel-confined MXene based flexible piezoresistive multifunctional microforce sensor. Adv. Funct. Mater. 2020, 30, 1909603.

    CAS  Google Scholar 

  5. Gou, G. Y.; Li, X. S.; Jian, J. M.; Tian, H.; Wu, F.; Ren, J.; Geng, X. S.; Xu, J. D.; Qiao, Y. C.; Yan, Z. Y. et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci. Adv. 2022, 8, eabn2156.

    CAS  Google Scholar 

  6. Ma, Y. N.; Liu, N. S.; Li, L. Y.; Hu, X. K.; Zou, Z. G.; Wang, J. B.; Luo, S. J.; Gao, Y. H. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207.

    Google Scholar 

  7. Wang, S. L.; Deng, W. L.; Yang, T.; Tian, G.; Xiong, D.; Xiao, X.; Zhang, H. R.; Sun, Y.; Ao, Y.; Huang, J. F. et al. Body-area sensor network featuring micropyramids for sports healthcare. Nano Res. 2023, 16, 1330–1337.

    Google Scholar 

  8. Lee, S.; Franklin, S.; Hassani, F. A.; Yokota, T.; Nayeem, O. G.; Wang, Y.; Leib, R.; Cheng, G.; Franklin, D. W.; Someya, T. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 2020, 370, 966–970.

    CAS  Google Scholar 

  9. Zhu, P.; Du, H. F.; Hou, X. Y.; Lu, P.; Wang, L.; Huang, J.; Bai, N. N.; Wu, Z. G.; Fang, N. X.; Guo, C. F. Skin–electrode iontronic interface for mechanosensing. Nat. Commun. 2021, 12, 4731.

    CAS  Google Scholar 

  10. Wen, D. L.; Pang, Y. X.; Huang, P.; Wang, Y. L.; Zhang, X. R.; Deng, H. T.; Zhang, X. S. Silk fibroin-based wearable all-fiber multifunctional sensor for smart clothing. Adv. Fiber Mater. 2022, 4, 873–884.

    CAS  Google Scholar 

  11. Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

    CAS  Google Scholar 

  12. Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411.

    CAS  Google Scholar 

  13. Tang, Q.; Pu, X. J.; Zeng, Q. X.; Yang, H. M.; Li, J.; Wu, Y.; Guo, H. Y.; Huang, Z. Y.; Hu, C. G. A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator. Nano Energy 2019, 66, 104087.

    CAS  Google Scholar 

  14. Zhang, B. B.; Wu, Z. Y.; Lin, Z. M.; Guo, H. Y.; Chun, F. J.; Yang, W. Q.; Wang, Z. L. All-in-one 3D acceleration sensor based on coded liquid-metal triboelectric nanogenerator for vehicle restraint system. Mater. Today 2021, 43, 37–44.

    CAS  Google Scholar 

  15. Chen, Z. F.; Wang, Z.; Li, X. M.; Lin, Y. X.; Luo, N. Q.; Long, M. Z.; Zhao, N.; Xu, J. B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 2017, 11, 4507–4513.

    CAS  Google Scholar 

  16. Yang, Y.; Pan, H.; Xie, G. Z.; Jiang, Y. D.; Chen, C. X.; Su, Y. J.; Wang, Y.; Tai, H. L. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sensors Actuat. A:Phys. 2020, 301, 111789.

    CAS  Google Scholar 

  17. Tian, G.; Deng, W. L.; Gao, Y. Y.; Xiong, D.; Yan, C.; He, X. B.; Yang, T.; Jin, L.; Chu, X.; Zhang, H. T. et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019, 59, 574–581.

    CAS  Google Scholar 

  18. Deng, W. L.; Zhou, Y. H.; Libanori, A.; Chen, G. R.; Yang, W. Q.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435.

    CAS  Google Scholar 

  19. Liu, J. Q.; Tian, G.; Yang, W. Q.; Deng, W. L. Recent progress in flexible piezoelectric devices toward human–machine interactions. Soft Sci. 2022, 2, 22.

    CAS  Google Scholar 

  20. Jiang, F.; Zhou, X. R.; Lv, J.; Chen, J.; Chen, J. T.; Kongcharoen, H.; Zhang, Y. H.; Lee, P. S. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting. Adv. Mater. 2022, 34, 2200042.

    CAS  Google Scholar 

  21. Li, S.; Zhang, Y.; Wang, Y. L.; Xia, K. L.; Yin, Z.; Wang, H. M.; Zhang, M. C.; Liang, X. P.; Lu, H. J.; Zhu, M. J. et al. Physical sensors for skin-inspired electronics. InfoMat 2020, 2, 184–211.

    CAS  Google Scholar 

  22. Panda, P. K.; Sahoo, B. PZT to lead free piezo ceramics: A review. Ferroelectrics 2015, 474, 128–143.

    CAS  Google Scholar 

  23. Jo, W.; Dittmer, R.; Acosta, M.; Zang, J. D.; Groh, C.; Sapper, E.; Wang, K.; Rödel, J. Giant electric-field-induced strains in lead-free ceramics for actuator applications—Status and perspective. J. Electroceram. 2012, 29, 71–93.

    CAS  Google Scholar 

  24. Sun, E. W.; Cao, W. W. Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci. 2014, 65, 124–210.

    CAS  Google Scholar 

  25. Hwang, G. T.; Park, H.; Lee, J. H.; Oh, S.; Park, K. I.; Byun, M.; Park, H.; Ahn, G.; Jeong, C. K.; No, K. et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 2014, 26, 4880–4887.

    CAS  Google Scholar 

  26. Gao, J. H.; Ke, X. Q.; Acosta, M.; Glaum, J.; Ren, X. B. High piezoelectricity by multiphase coexisting point: Barium titanate derivatives. MRS Bull. 2018, 43, 595–599.

    CAS  Google Scholar 

  27. Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G. A. Jr; Rodel, J. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 041305.

    Google Scholar 

  28. Jeong, C. K.; Baek, C.; Kingon, A. I.; Park, K. I.; Kim, S. H. Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester. Small 2018, 14, 1704022.

    Google Scholar 

  29. Shin, Y. J.; Kim, Y.; Kang, S. J.; Nahm, H. H.; Murugavel, P.; Kim, J. R.; Cho, M. R.; Wang, L. F.; Yang, S. M.; Yoon, J. G. et al. Interface control of ferroelectricity in an SrRuO3/BaTiO3/SrRuO3 capacitor and its critical thickness. Adv. Mater. 2017, 29, 1602795.

    Google Scholar 

  30. Wang, L. F.; Cho, M. R.; Shin, Y. J.; Kim, J. R.; Das, S.; Yoon, J. G.; Chung, J. S.; Noh, T. W. Overcoming the fundamental barrier thickness limits of ferroelectric tunnel junctions through BaTiO3/SrTiO3 composite barriers. Nano Lett. 2016, 16, 3911–3918.

    CAS  Google Scholar 

  31. Ruan, L. X.; Yao, X. N.; Chang, Y. F.; Zhou, L. Q.; Qin, G. W.; Zhang, X. M. Properties and applications of the β phase poly(vinylidene fluoride). Polymers 2018, 10, 228.

    Google Scholar 

  32. Hong, Y.; Wang, B.; Long, Z. H.; Zhang, Z. M.; Pan, Q. Q.; Liu, S. Y.; Luo, X. W.; Yang, Z. B. Hierarchically interconnected piezoceramic textile with a balanced performance in piezoelectricity, flexibility, toughness, and air permeability. Adv. Funct. Mater. 2021, 31, 2104737.

    CAS  Google Scholar 

  33. Wang, Z. H.; Cheng, J.; Xie, Y.; Wang, Y. H.; Yu, Z. H.; Li, S.; Li, L. T.; Dong, S. X.; Wang, H. Lead-free piezoelectric composite based on a metamaterial for electromechanical energy conversion. Adv. Mater. Technol. 2022, 7, 2200650.

    CAS  Google Scholar 

  34. Chen, X. L.; Li, X. M.; Shao, J. Y.; An, N. L.; Tian, H. M.; Wang, C.; Han, T. Y.; Wang, L.; Lu, B. H. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 2017, 13, 1604245.

    Google Scholar 

  35. Shi, S. H.; Zhai, Y. Z.; Zhang, Y. L.; Wang, H.; Li, Z. C.; Fan, X.; Zhang, Y. Y.; Liu, J. J.; Li, P.; Zhai, J. W. et al. Ultra-sensitive flexible piezoelectric energy harvesters inspired by pine branches for detection. Nano Energy 2022, 99, 107422.

    CAS  Google Scholar 

  36. Gao, X.; Zheng, M. P.; Lv, H. J.; Zhang, Y. Z.; Zhu, M. K.; Hou, Y. D. Ultrahigh sensitive flexible sensor based on textured piezoelectric composites for preventing sports injuries. Compos. Sci. Technol. 2022, 229, 109693.

    CAS  Google Scholar 

  37. Zhu, M. M.; Li, J. L.; Yu, J. Y.; Li, Z. L.; Ding, B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew. Chem., Int. Ed. 2022, 61, e202200226.

    CAS  Google Scholar 

  38. Zhu, M. M.; Yu, J. Y.; Li, Z. L.; Ding, B. Self-healing fibrous membranes. Angew. Chem., Int. Ed. 2022, 61, e202208949.

    CAS  Google Scholar 

  39. Qi, F. W.; Zeng, Z. C.; Yao, J.; Cai, W. L.; Zhao, Z. Y.; Peng, S. P.; Shuai, C. J. Constructing core–shell structured BaTiO3@carbon boosts piezoelectric activity and cell response of polymer scaffolds. Mater. Sci. Eng.: C2021, 126, 112129.

    CAS  Google Scholar 

  40. Tu, S. B.; Jiang, Q.; Zhang, X. X.; Alshareef, H. N. Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 2018, 12, 3369–3377.

    CAS  Google Scholar 

  41. Tian, G.; Deng, W. L.; Xiong, D.; Yang, T.; Zhang, B. B.; Ren, X. R.; Lan, B. L.; Zhong, S.; Jin, L.; Zhang, H. R. et al. Dielectric microcapacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep. Phys. Sci. 2022, 3, 100814.

    CAS  Google Scholar 

  42. Xu, R.; Guo, J. F.; Mi, S.; Wen, H. F.; Pang, F.; Ji, W.; Cheng, Z. H. Advanced atomic force microscopies and their applications in two-dimensional materials: A review. Mater. Futures 2022, 1, 032302.

    Google Scholar 

  43. Tian, G.; Deng, W. L.; Yang, T.; Xiong, D.; Zhang, H. R.; Lan, B. L.; Deng, L.; Zhang, B. B.; Jin, L.; Huang, H. C. et al. Insight into interfacial polarization for enhancing piezoelectricity in ferroelectric nanocomposites. Small 2023, 19, 2207947.

    CAS  Google Scholar 

  44. Cai, J. Y.; Du, M. J.; Li, Z. L. Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 2022, 7, 2101182.

    Google Scholar 

  45. Shi, S. H.; Pan, Z. B.; Cheng, Y.; Zhai, Y. Z.; Zhang, Y. L.; Ding, X. P.; Liu, J. J.; Zhai, J. W.; Xu, J. K. Three-dimensional polypyrrole induced high-performance flexible piezoelectric nanogenerators for mechanical energy harvesting. Compos. Sci. Technol. 2022, 219, 109260.

    CAS  Google Scholar 

  46. Zhang, C.; Fan, Y. J.; Li, H. Y.; Li, Y. Y.; Zhang, L.; Cao, S. B.; Kuang, S. Y.; Zhao, Y. B.; Chen, A. H.; Zhu, G. et al. Fully rollable lead-free poly(vinylidene fluoride)-niobate-based nanogenerator with ultra-flexible nano-network electrodes. ACS Nano 2018, 12, 4803–4811.

    CAS  Google Scholar 

  47. Cai, S. Y.; Xu, C. S.; Jiang, D. F.; Yuan, M. L.; Zhang, Q. W.; Li, Z. L.; Wang, Y. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy 2022, 93, 106904.

    CAS  Google Scholar 

  48. Zhou, Z.; Du, X. X.; Luo, J. K.; Yao, L. Q.; Zhang, Z.; Yang, H.; Zhang, Q. L. Coupling of interface effects and porous microstructures in translucent piezoelectric composites for enhanced energy harvesting and sensing. Nano Energy 2021, 84, 105895.

    CAS  Google Scholar 

  49. Araujo, C. F.; Nolasco, M. M.; Ribeiro, A. M. P.; Ribeiro-Claro, P. J. A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018, 142, 426–440.

    CAS  Google Scholar 

  50. Butler, H. J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N. J.; Gardner, B.; Martin-Hirsch, P. L. et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 2016, 11, 664–687.

    CAS  Google Scholar 

  51. Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82–86.

    CAS  Google Scholar 

  52. Jiang, J. Y.; Shen, Z. H.; Qian, J. F.; Dan, Z. K.; Guo, M. F.; He, Y.; Lin, Y. H.; Nan, C. W.; Chen, L. Q.; Shen, Y. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy 2019, 62, 220–229.

    CAS  Google Scholar 

  53. Lu, X.; Qu, H.; Skorobogatiy, M. Piezoelectric micro- and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: Comparative study and potential applications. ECS Trans. 2018, 86, 57–69.

    CAS  Google Scholar 

  54. Kang, H. B.; Han, C. S.; Pyun, J. C.; Ryu, W. H.; Kang, C. Y.; Cho, Y. S. (Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators. Compos. Sci. Technol. 2015, 111, 1–8.

    CAS  Google Scholar 

  55. Choi, M.; Murillo, G.; Hwang, S.; Kim, J. W.; Jung, J. H.; Chen, C. Y.; Lee, M. Mechanical and electrical characterization of PVDF-ZnO hybrid structure for application to nanogenerator. Nano Energy 2017, 33, 462–468.

    CAS  Google Scholar 

  56. Mishra, M.; Roy, A.; Dash, S.; Mukherjee, S. Flexible nano-GFO/PVDF piezoelectric-polymer nano-composite films for mechanical energy harvesting. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 338, 012026.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Sichuan Science and Technology Program (No. 2023NSFSC0313), the Basic Research Cultivation Project (No. 2682021ZTPY004), the Sichuan Province Foundation for Distinguished Young Team (No. 20CXTD0106), and Catalyst Seeding General Grant administered by the Royal Society of New Zealand (Contract 20-UOA-035-CSG). Thanks for the help from the Analysis and Testing Center of Southwest Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weili Deng or Weiqing Yang.

Electronic Supplementary Material

Gradient CNT/PVDF piezoelectric composite with enhanced force-electric coupling for soccer training

Supplementary material, approximately 41.6 MB.

Supplementary material, approximately 36.0 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, W., Deng, W., Yang, T. et al. Gradient CNT/PVDF piezoelectric composite with enhanced force-electric coupling for soccer training. Nano Res. 16, 11312–11319 (2023). https://doi.org/10.1007/s12274-023-5869-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5869-6

Keywords

Navigation