Skip to main content
Log in

Engineering the high-entropy phase of Pt-Au-Cu nanowire for electrocatalytic hydrogen evolution

  • Communication
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hydrogen economy, as the most promising alternative energy system, relies on the hydrogen production through sustainable water splitting which in turn relies on the high efficiency electrocatalysts. PtAuCu A1-phase alloy has been predicted to be a promising electrocatalyst for the hydrogen evolution. As such preferred phase of Pt-Au-Cu is not thermodynamically favored, herein, we stabilize PtAuCu alloy by engineering the high-entropy phase in the form of nanowire. Density functional theory (DFT) calculations indicate that, in comparison with the ordered phase and segregated phases with discrete hydrogen binding energy, the high-entropy phase provides a diverse combination of site composition to continuously tune the hydrogen binding energy, and thus generate a series of highly active sites for the hydrogen evolution. Reflecting the theoretical prediction, electrochemical tests show that the A1-phase PtAuCu nanowire significantly outperforms its nanoparticle counterpart with phase segregation, toward the electrocatalysis of hydrogen evolution, offering one of the best hydrogen evolution electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vesborg, P. C. K.; Seger, B.; Chorkendorff, I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 2015, 6, 951–957.

    Article  CAS  Google Scholar 

  2. Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.

    Article  CAS  Google Scholar 

  3. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

    Article  CAS  Google Scholar 

  4. Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

    Article  CAS  Google Scholar 

  5. Yang, T. T.; Zhu, H.; Wan, M.; Dong, L.; Zhang, M.; Du, M. L. Highly efficient and durable PtCo alloy nanoparticles encapsulated in carbon nanofibers for electrochemical hydrogen generation. Chem. Commun. 2016, 52, 990–993.

    Article  CAS  Google Scholar 

  6. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

    Article  CAS  Google Scholar 

  7. Sheng, W. C.; Myint, M.; Chen, J. G.; Yan, Y. S. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 2013, 6, 1509–1512.

    Article  CAS  Google Scholar 

  8. Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. 2012, 124, 12663–12666.

    Article  Google Scholar 

  9. Intikhab, S.; Snyder, J. D.; Tang, M. H. Adsorbed hydroxide does not participate in the volmer step of alkaline hydrogen electrocatalysis. ACS Catal. 2017, 7, 8314–8319.

    Article  CAS  Google Scholar 

  10. Wang, T.; Guo, Y. R.; Zhou, Z. X.; Chang, X. H.; Zheng, J.; Li, X. G. Ni-Mo nanocatalysts on N-doped graphite nanotubes for highly efficient electrochemical hydrogen evolution in acid. ACS Nano 2016, 10, 10397–10403.

    Article  CAS  Google Scholar 

  11. Wang, H. P.; Li, X. B.; Gao, L.; Wu, H. L.; Yang, J.; Cai, L.; Ma, T. B.; Tung, C. H.; Wu, L. Z.; Yu, G. Three-dimensional graphene networks with abundant sharp edge sites for efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 192–197.

    Article  CAS  Google Scholar 

  12. Wang, X. S.; Zhu, Y. H.; Vasileff, A.; Jiao, Y.; Chen, S. M.; Song, L.; Zheng, B.; Zheng, Y.; Qiao, S. Z. Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction. ACS Energy Lett. 2018, 3, 1198–1204.

    Article  CAS  Google Scholar 

  13. Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    Article  CAS  Google Scholar 

  14. Jiang, B. B.; Tang, Z. Y.; Liao, F.; Lin, H. P.; Lu, S. K.; Li, Y. Y.; Shao, M. W. Powerful synergy: Efficient Pt-Au-Si nanocomposites as state-of-the-art catalysts for electrochemical hydrogen evolution. J. Mater. Chem. A 2017, 5, 21903–21908.

    Article  CAS  Google Scholar 

  15. Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 2017, 8, 15131.

    Article  Google Scholar 

  16. Shen, Y.; Zhou, Y. F.; Wang, D.; Wu, X.; Li, J.; Xi, J. Y. Nickel-copper alloy encapsulated in graphitic carbon shells as electrocatalysts for hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1701759.

    Article  Google Scholar 

  17. Wei, M.; Huang, L.; Huang, S. L.; Chen, Z. Y.; Lyu, D.; Zhang, X. R.; Wang, S. B.; Tian, Z. Q.; Shen, P. K. Highly efficient Pt-Co alloy hollow spheres with ultra-thin shells synthesized via Co-B-O complex as intermediates for hydrogen evolution reaction. J. Catal. 2020, 381, 385–394.

    Article  CAS  Google Scholar 

  18. Huang, L. L.; Chen, P. C.; Liu, M. H.; Fu, X. B.; Gordiichuk, P.; Yu, Y. N.; Wolverton, C.; Kang, Y. J.; Mirkin, C. A. Catalyst design by scanning probe block copolymer lithography. Proc. Natl. Acad. Sci. USA 2018, 115, 3764–3769.

    Article  CAS  Google Scholar 

  19. Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

    Article  CAS  Google Scholar 

  20. Cheng, H. F.; Yang, N. L.; Lu, Q. P.; Zhang, Z. C.; Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 2018, 30, 1707189.

    Article  Google Scholar 

  21. Wang, J. L.; Wei, Y.; Li, H.; Huang, X.; Zhang, H. Crystal phase control in two-dimensional materials. Sci. China Chem. 2018, 61, 1227–1242.

    Article  Google Scholar 

  22. Chen, P. C.; Du, J. S.; Meckes, B.; Huang, L. L.; Xie, Z.; Hedrick, J. L.; Dravid, V. P.; Mirkin, C. A. Structural evolution of three-component nanoparticles in polymer nanoreactors. J. Am. Chem. Soc. 2017, 139, 9876–9884.

    Article  CAS  Google Scholar 

  23. Ye, Y. F.; Wang, Q.; Lu, J.; Liu, C. T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362.

    Article  CAS  Google Scholar 

  24. Aikens, D. A. Electrochemical methods, fundamentals and applications. J. Chem. Educ. 1983, 60, A25.

    Article  Google Scholar 

  25. Holze, R. Book review: Electrochemical methods. fundamentals and applications (2nd edition). By Allen J. Bard and Larry R. Faulkner. Angew. Chem., Int. Ed. 2002, 41, 655–657.

    Google Scholar 

  26. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  CAS  Google Scholar 

  27. Lombardo, D.; Calandra, P.; Pasqua, L.; Magazù, S. Self-assembly of organic nanomaterials and biomaterials: The bottom-up approach for functional nanostructures formation and advanced applications. Materials 2020, 13, 1048.

    Article  CAS  Google Scholar 

  28. Kang, Y. J.; Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 2010, 132, 7568–7569.

    Article  CAS  Google Scholar 

  29. Kang, Y. J.; Qi, L.; Li, M.; Diaz, R. E.; Su, D.; Adzic, R. R.; Stach, E.; Li, J.; Murray, C. B. Highly active Pt3Pb and core–shell Pt3Pb-Pt electrocatalysts for formic acid oxidation. ACS Nano 2012, 6, 2818–2825.

    Article  CAS  Google Scholar 

  30. Zhan, W. C.; Wang, J. L.; Wang, H. F.; Zhang, J. S.; Liu, X. F.; Zhang, P. F.; Chi, M. F.; Guo, Y. L.; Guo, Y.; Lu, G. Z. et al. Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation. J. Am. Chem. Soc. 2017, 139, 8846–8854.

    Article  CAS  Google Scholar 

  31. Kang, Y. J.; Snyder, J.; Chi, M. F.; Li, D. G.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R. Multimetallic core/interlayer/shell nanostructures as advanced electrocatalysts. Nano Lett. 2014, 14, 6361–6367.

    Article  CAS  Google Scholar 

  32. Yang, Z. B.; Sun, J.; Lu, S.; Vitos, L. A comparative study of solid-solution strengthening in Cr-Co-Ni complex concentrated alloys: The effect of magnetism. Comput. Mater. Sci. 2021, 192, 110408.

    Article  CAS  Google Scholar 

  33. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

    Article  Google Scholar 

  34. Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

    Article  CAS  Google Scholar 

  35. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  36. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  37. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  38. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSF-C) (Nos. 21773023 and 21972016). The authors thank Prof. Vicky Doan-Nguyen (Ohio State Univ.) and Dr. James P. Horwath (Univ. of Pennsylvania) for the XRD simulation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenhua Zeng or Yijin Kang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Liu, G., Jiang, S. et al. Engineering the high-entropy phase of Pt-Au-Cu nanowire for electrocatalytic hydrogen evolution. Nano Res. 16, 10742–10747 (2023). https://doi.org/10.1007/s12274-023-5868-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5868-7

Keywords

Navigation