Skip to main content
Log in

Spin selectivity of chiral mesostructured diamagnetic BiOBr films

  • Communication
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The chirality-induced spin selectivity (CISS) has been found in the antiferromagnetic and paramagnetic chiral inorganic materials with unpaired electrons, while rarely reported in the spin-paired diamagnetic inorganic materials with spin-pairing energy. Here, we report the CISS in the spin-paired diamagnetic BiOBr endowed with three levels of chiral mesostructures. Chiral mesostructured BiOBr films (CMBFs) were fabricated through a sugar alcohol-induced hydrothermal route. The antipodal CMBFs exhibited chirality-dependent, magnetic field-independent magnetic circular dichroism (MCD) signals, which indicates the existence of spin selectivity. The spin selectivity of CMBFs was speculated to be the result of the competing effect between the externally applied magnetic field and the effective magnetic field arisen from the spin electron motions in chiral potential. The chirality-induced effective magnetic field acts on the magnetic moment of electrons, potentially overcoming the spin-pairing energy and producing opposite energy changes for spin-down and spin-up electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Brandt, J. R.; Salerno, F.; Fuchter, M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 2017, 1, 0045.

    Article  CAS  Google Scholar 

  2. Kim, Y. H.; Zhai, Y. X.; Lu, H. P.; Pan, X.; Xiao, C. X.; Gaulding, E. A.; Harvey, S. P.; Berry, J. J.; Vardeny, Z. V.; Luther, J. M. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371, 1129–1133.

    Article  CAS  Google Scholar 

  3. Metzger, T. S.; Mishra, S.; Bloom, B. P.; Goren, N.; Neubauer, A.; Shmul, G.; Wei, J. M.; Yochelis, S.; Tassinari, F.; Fontanesi, C. et al. The electron spin as a chiral reagent. Angew. Chem., Int. Ed. 2020, 59, 1653–1658.

    Article  CAS  Google Scholar 

  4. Naaman, R.; Paltiel, Y.; Waldeck, D. H. Chiral induced spin selectivity and its implications for biological functions. Annu. Rev. Biophys. 2022, 51, 99–114.

    Article  Google Scholar 

  5. Naaman, R.; Waldeck, D. H. Spintronics and chirality: Spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 2015, 66, 263–281.

    Article  CAS  Google Scholar 

  6. Göhler, B.; Hamelbeck, V.; Markus, T. Z.; Kettner, M.; Hanne, G. F.; Vager, Z.; Naaman, R.; Zacharias, H. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 2011, 331, 894–897.

    Article  Google Scholar 

  7. Wolf, Y.; Liu, Y. Z.; Xiao, J. W.; Park, N.; Yan, B. H. Unusual spin polarization in the chirality-induced spin selectivity. ACS Nano 2022, 16, 18601–18607.

    Article  CAS  Google Scholar 

  8. Inui, A.; Aoki, R.; Nishiue, Y.; Shiota, K.; Kousaka, Y.; Shishido, H.; Hirobe, D.; Suda, M.; Ohe, J. I.; Kishine, J. I. et al. Chirality-induced spin-polarized state of a chiral crystal CrNb3S6. Phys. Rev. Lett. 2020, 124, 166602.

    Article  CAS  Google Scholar 

  9. Gao, X. Y.; Vaidya, S.; Li, K. J.; Ju, P.; Jiang, B. Y.; Xu, Z. J.; Allcca, A. E. L.; Shen, K. H.; Taniguchi, T.; Watanabe, K. et al. Nuclear spin polarization and control in hexagonal boron nitride. Nat. Mater. 2022, 21, 1024–1028.

    Article  CAS  Google Scholar 

  10. Möllers, P. V.; Wei, J. M.; Salamon, S.; Bartsch, M.; Wende, H.; Waldeck, D. H.; Zacharias, H. Spin-polarized photoemission from chiral CuO catalyst thin films. ACS Nano 2022, 16, 12145–12155.

    Article  Google Scholar 

  11. Lu, H. P.; Vardeny, Z. V.; Beard, M. C. Control of light, spin and charge with chiral metal halide semiconductors. Nat. Rev. Chem. 2022, 6, 470–485.

    Article  Google Scholar 

  12. Qian, Q.; Ren, H. Y.; Zhou, J. Y.; Wan, Z.; Zhou, J. X.; Yan, X. X.; Cai, J.; Wang, P. Q.; Li, B. L.; Sofer, Z. et al. Chiral molecular intercalation superlattices. Nature 2022, 606, 902–908.

    Article  CAS  Google Scholar 

  13. Torres-Cavanillas, R.; Escorcia-Ariza, G.; Brotons-Alcázar, I.; Sanchis-Gual, R.; Mondal, P. C.; Rosaleny, L. E.; Giménez-Santamarina, S.; Sessolo, M.; Galbiati, M.; Tatay, S. et al. Reinforced room-temperature spin filtering in chiral paramagnetic metallopeptides. J. Am. Chem. Soc. 2020, 142, 17572–17580.

    Article  CAS  Google Scholar 

  14. Naaman, R.; Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 2012, 3, 2178–2187.

    Article  CAS  Google Scholar 

  15. Waldeck, D. H.; Naaman, R.; Paltiel, Y. The spin selectivity effect in chiral materials. APL Mater. 2021, 9, 040902.

    Article  CAS  Google Scholar 

  16. Bai, T.; Ai, J.; Liao, L. Y.; Luo, J. W.; Song, C.; Duan, Y. Y.; Han, L.; Che, S. N. Chiral mesostructured NiO films with spin polarisation. Angew. Chem., Int. Ed. 2021, 60, 9421–9426.

    Article  CAS  Google Scholar 

  17. Bai, T.; Ai, J.; Duan, Y. Y.; Han, L.; Che, S. N. Spin selectivity of chiral mesostructured iron oxides with different magnetisms. Small 2022, 18, 2104509.

    Article  CAS  Google Scholar 

  18. Bai, T.; Ai, J.; Ma, J.; Duan, Y. Y.; Han, L.; Jiang, J. G.; Che, S. N. Resistance-chiral anisotropy of chiral mesostructured half-metallic Fe3O4 films. Angew. Chem., Int. Ed. 2021, 60, 20036–20041.

    Article  CAS  Google Scholar 

  19. Liu, Z. X.; Ai, J.; Bai, T.; Fang, Y. X.; Ding, K.; Duan, Y. Y.; Han, L.; Che, S. N. Photomagnetic-chiral anisotropy of chiral nanostructured gold films. Chem 2022, 8, 186–196.

    Article  CAS  Google Scholar 

  20. Mishra, D.; Markus, T. Z.; Naaman, R.; Kettner, M.; Göhler, B.; Zacharias, H.; Friedman, N.; Sheves, M.; Fontanesi, C. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Pro. Natl. Acad. Sci. USA 2013, 110, 14872–14876.

    Article  CAS  Google Scholar 

  21. Kettner, M.; Maslyuk, V. V.; Nürenberg, D.; Seibel, J.; Gutierrez, R.; Cuniberti, G.; Ernst, K. H.; Zacharias, H. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. J. Phys. Chem. Lett. 2018, 9, 2025–2030.

    Article  CAS  Google Scholar 

  22. Ganose, A. M.; Cuff, M.; Butler, K. T.; Walsh, A.; Scanlon, D. O. Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chem. Mater. 2016, 28, 1980–1984.

    Article  CAS  Google Scholar 

  23. Li, T.; Zhang, X. C.; Zhang, C. M.; Li, R.; Liu, J. X.; Lv, R.; Zhang, H.; Han, P. D.; Fan, C. M.; Zheng, Z. F. Theoretical insights into photo-induced electron transfer at BiOX (X = F, Cl, Br, I) (001) surfaces and interfaces. Phys. Chem. Chem. Phys. 2019, 21, 868–875.

    Article  CAS  Google Scholar 

  24. Kato, T. The essential role of vibronic interactions in electron pairing in the micro- and macroscopic sized materials. Chem. Phys. 2010, 376, 84–93.

    Article  CAS  Google Scholar 

  25. König, E.; Kremer, S. Exact spin-pairing energies at the crossovers in octahedral d4, d5, d6, and d7 transition metal complexes. Theor. Chim. Acta 1971, 23, 12–20.

    Article  Google Scholar 

  26. Ding, K.; Ai, J.; Duan, Y. Y.; Han, L.; Qu, Z. B.; Che, S. N. Mechanism of diastereoisomer-induced chirality of BiOBr. Chem. Sci. 2022, 13, 2450–2455.

    Article  CAS  Google Scholar 

  27. Ding, K.; Ai, J.; Deng, Q. Z.; Huang, B.; Zhou, C.; Duan, T. W.; Duan, Y. Y.; Han, L.; Jiang, J. J.; Che, S. N. Chiral mesostructured BiOBr films with circularly polarized colour response. Angew. Chem., Int. Ed. 2021, 60, 19024–19029.

    Article  CAS  Google Scholar 

  28. Gaidamauskas, E.; Norkus, E.; Vaičiūnienė, J.; Crans, D. C.; Vuorinen, T.; Jačiauskienė, J.; Baltrūnas, G. Evidence of two-step deprotonation of D-mannitol in aqueous solution. Carbohydr. Res. 2005, 340, 1553–1556.

    Article  CAS  Google Scholar 

  29. Odenthal, P.; Talmadge, W.; Gundlach, N.; Wang, R. Z.; Zhang, C.; Sun, D. L.; Yu, Z. G.; Valy Vardeny, Z.; Li, Y. S. Spin-polarized exciton quantum beating in hybrid organic-inorganic perovskites. Nat. Phys. 2017, 13, 894–899.

    Article  CAS  Google Scholar 

  30. Stephens, P. J. Magnetic circular dichroism. In Advances in Chemical Physics. Prigogine, I.; Rice, S. A., Eds.; John Wiley & Sons, Inc.: Hoboken, 1976; pp 197–264.

    Chapter  Google Scholar 

  31. Nagao, K.; Tsunenori, N.; Masahiro, H. Near-infrared magnetic circular dichroism studies on iron(III) horse heart cytochrome c. Bull. Chem. Soc. Japan 1981, 54, 919–920.

    Article  Google Scholar 

  32. Yin, P. H.; Tan, Y.; Fang, H. B.; Hegde, M.; Radovanovic, P. V. Plasmon-induced carrier polarization in semiconductor nanocrystals. Nat. Nanotechnol. 2018, 13, 463–467.

    Article  CAS  Google Scholar 

  33. Takao, Y.; Tsunenori, N.; Nagao, K.; Masahiro, H. Origins and spin dependence of near infrared magnetic circular dichroism of iron(III) hemoproteins. Bull. Chem. Soc. Jpn. 1982, 55, 3059–3063.

    Article  Google Scholar 

  34. Ray, K.; Ananthavel, S. P.; Waldeck, D. H.; Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 1999, 283, 814–816.

    Article  CAS  Google Scholar 

  35. Cherroret, N.; Chakravarty, A.; Kar, A. Temperature-dependent refractive index of semiconductors. J. Mater. Sci. 2008, 43, 1795–1801.

    Article  CAS  Google Scholar 

  36. Bloom, B. P.; Graff, B. M.; Ghosh, S.; Beratan, D. N.; Waldeck, D. H. Chirality control of electron transfer in quantum dot assemblies. J. Am. Chem. Soc. 2017, 139, 9038–9043.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2021YFA1200300), the National Natural Science Foundation of China (Nos. 21931008, 21975184, 21873072, and 21922304,), and the scientific foundation of the Shanghai Municipal Science and Technology Commission (Nos. 19JC1410300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Duan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, K., Ai, J., Chen, H. et al. Spin selectivity of chiral mesostructured diamagnetic BiOBr films. Nano Res. 16, 11444–11449 (2023). https://doi.org/10.1007/s12274-023-5866-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5866-9

Keywords

Navigation