Skip to main content
Log in

Flexoelectricity-enhanced photovoltaic effect in trapezoid-shaped NaNbO3 nanotube array composites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, we successfully prepared vertically aligned NaNbO3 nanotube (NN-NT) with trapezoidal shapes, in which the orthorhombic and monoclinic phases coexisted. According to the structure analysis, the NN-NT/epoxy composite film had excellent flexoelectric properties due to the lattice distortion caused by defects and irregular shape. The flexoelectric effect is the greatest in the vertical direction in the flexible NN-NT/epoxy composite film, and the flexoelectric coefficient (\(\mu _{12}^\prime \)) is 2.77 × 10−8C·m−1, which is approximately 5-fold higher than that of the pure epoxy film. The photovoltaic current of the NN-NT/epoxy composite film increased from 39.9 to 71.8 nA·cm−2 in the direction of spontaneous polarization when the sample was bent upward due to the flexoelectricity-enhanced photovoltaic (FPV) effect. The flexoelectric effect of the NN-NT/epoxy composite film could modulate the photovoltaic response by increasing it by 80% or reducing it to 65% of the original value. This work provides a new idea for further exploration in efficient and lossless ferroelectric memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shu, L. L.; Liang, R. H.; Rao, Z. G.; Fei, L. F.; Ke, S. M.; Wang, Y. Flexoelectric materials and their related applications: A focused review. J. Adv. Ceram. 2019, 8, 153–173.

    Article  CAS  Google Scholar 

  2. Gong, Y. Y.; Chen, C.; Zhang, F. Q.; He, X.; Zeng, H. R.; Yang, Q. B.; Li, Y. X.; Yi, Z. G. Ferroelectric photovoltaic and flexo-photovoltaic effects in (1−x)(Bi0.5Na0.5)TiO3−xBiFeO3 systems under visible light. J. Am. Ceram. Soc. 2020, 103, 4363–1372.

    Article  CAS  Google Scholar 

  3. Catalan, G.; Lubk, A.; Vlooswijk, A. H. G.; Snoeck, E.; Magen, C.; Janssens, A.; Rispens, G.; Rijnders, G.; Blank, D. H. A.; Noheda, B. Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 2011, 10, 963–969.

    Article  CAS  Google Scholar 

  4. Narvaez, J.; Vasquez-Sancho, F.; Catalan, G. Enhanced flexoelectric-like response in oxide semiconductors. Nature 2016, 538, 219–221.

    Article  CAS  Google Scholar 

  5. Baskaran, S.; Ramachandran, N.; He, X. T.; Thiruvannamalai, S.; Lee, H. J.; Heo, H.; Chen, Q.; Fu, J. Y. Giant flexoelectricity in polyvinylidene fluoride films. Phys. Lett. A 2011, 375, 2082–2084.

    Article  CAS  Google Scholar 

  6. Liu, K. Y.; Zhang, S. W.; Wu, T. H.; Ji, H.; Xu, M. L.; Shen, S. P. Decoupled shear flexoelectric effects in polymers. J. Appl. Phys. 2019, 125, 174104.

    Article  Google Scholar 

  7. Zelisko, M.; Hanlumyuang, Y.; Yang, S. B.; Liu, Y. M.; Lei, C. H.; Li, J. Y.; Ajayan, P. M.; Sharma, P. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets. Nat. Commun. 2014, 5, 4284.

    Article  CAS  Google Scholar 

  8. Brody, P. S.; Crowne, F. Mechanism for the high voltage photovoltaic effect in ceramic ferroelectrics. J. Electron. Mater. 1975, 4, 955–971.

    Article  CAS  Google Scholar 

  9. Glass, A. M.; von der Linde, D.; Negran, T. J. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phy. Lett. 1974, 25, 233–235.

    Article  CAS  Google Scholar 

  10. Gunter, P.; Micheron, F. Photorefractive effects and photocurrents in KNbO3:Fe. Ferroelectrics 1978, 18, 27–38.

    Article  Google Scholar 

  11. Zhou, N.; Zhao, K.; Liu, H.; Lu, Z. Q.; Zhao, H.; Tian, L.; Liu, W. W.; Zhao, S. Q. Ultrafast photovoltaic effects in miscut Nb-doped SrTiO3 single crystals. J. Appl. Phys. 2009, 105, 083110.

    Article  Google Scholar 

  12. Yang, M. M.; Kim, D. J.; Alexe, M. Flexo-photovoltaic effect. Science 2018, 360, 904–907.

    Article  CAS  Google Scholar 

  13. Jiang, Z. Z.; Xu, Z. Y.; Xi, Z. N.; Yang, Y. H.; Wu, M.; Li, Y. K.; Li, X.; Wang, Q. Y.; Li, C.; Wu, D. et al. Flexoelectric-induced photovoltaic effects and tunable photocurrents in flexible LaFeO3 epitaxial heterostructures. J. Mater. 2022, 8, 281–287.

    Google Scholar 

  14. Huang, Q. C.; Fan, Z.; Rao, J. J.; Yang, T. Y.; Zhang, X. M.; Chen, D. Y.; Qin, M. H.; Zeng, M.; Lu, X. B.; Zhou, G. F. et al. Significant modulation of ferroelectric photovoltaic behavior by a giant macroscopic flexoelectric effect induced by strain-relaxed epitaxy. Adv. Electron. Mater. 2021, 8, 2100612.

    Article  Google Scholar 

  15. Shao, P. W.; Lin, M. C.; Zhuang, Q.; Huang, J. W.; Liu, S.; Chen, H. W.; Liu, H. L.; Lu, Y. J.; Hsu, Y. J.; Wu, J. M. et al. Flexo-phototronic effect in centro-symmetric BiVO4 epitaxial films. Appl. Catal. B: Environ. 2022, 312, 121367.

    Article  CAS  Google Scholar 

  16. Chu, K.; Jang, B. K.; Sung, J. H.; Shin, Y. A.; Lee, E. S.; Song, K.; Lee, J. H.; Woo, C. S.; Kim, S. J.; Choi, S. Y. et al. Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients. Nat. Nanotechnol. 2015, 10, 972–979.

    Article  CAS  Google Scholar 

  17. Sun, Z. H.; Wei, J.; Yang, T. T.; Li, Y. P.; Liu, Z. T.; Chen, G. G.; Wang, T. G.; Sun, H.; Cheng, Z. X. Integrating band engineering and the flexoelectric effect induced by a composition gradient for high photocurrent density in bismuth ferrite films. ACS Appl. Mater. Interfaces 2021, 13, 49850–49859.

    Article  CAS  Google Scholar 

  18. Wu, M.; Jiang, Z. Z.; Lou, X. J.; Zhang, F.; Song, D. S.; Ning, S. C.; Guo, M. Y.; Pennycook, S. J.; Dai, J. Y.; Wen, Z. Flexoelectric thin-film photodetectors. Nano. Lett. 2021, 21, 2946–2952.

    Article  CAS  Google Scholar 

  19. Kumar, M.; Park, J. Y.; Seo, H. Boosting self-powered ultraviolet photoresponse of TiO2-based heterostructure by flexo-phototronic effects. Adv. Opt. Mater. 2022, 10, 2102532.

    Article  CAS  Google Scholar 

  20. Park, S. M.; Wang, B.; Das, S.; Chae, S. C.; Chung, J. S.; Yoon, J. G.; Chen, L. Q.; Yang, S. M.; Noh, T. W. Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field. Nat. Nanotechnol. 2018, 13, 366–370.

    Article  CAS  Google Scholar 

  21. Hu, X. P.; Zhou, Y.; Liu, J.; Chu, B. J. Improved flexoelectricity in PVDF/barium strontium titanate (BST) nanocomposites. J. Appl. Phys. 2018, 123, 154101.

    Article  Google Scholar 

  22. Dong, G. H.; Li, S. Z.; Yao, M. T.; Zhou, Z. Y.; Zhang, Y. Q.; Han, X.; Luo, Z. L.; Yao, J. X.; Peng, B.; Hu, Z. Q. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 2019, 366, 475–479.

    Article  CAS  Google Scholar 

  23. Wang, C. C.; Zhang, Y.; Zhang, B. W.; Wang, B.; Zhang, J. X.; Chen, L. Q.; Zhang, Q. M.; Wang, Z. L.; Ren, K. L. Flexophotovoltaic effect in potassium sodium niobate/poly(vinylidene fluoride-trifluoroethylene) nanocomposite. Adv. Sci. 2021, 8, 2004554.

    Article  CAS  Google Scholar 

  24. Zhang, B. W.; Tan, D.; Cao, X. D.; Tian, J. Y.; Wang, Y. G.; Zhang, J. X.; Wang, Z. L.; Ren, K. L. Flexoelectricity-enhanced photovoltaic effect in self-polarized flexible PZT nanowire array devices. ACS Nano 2022, 16, 7834–7847.

    Article  CAS  Google Scholar 

  25. Shu, L. L.; Ke, S. M.; Fei, L. F.; Huang, W. B.; Wang, Z. G.; Gong, J. H.; Jiang, X. N.; Wang, L.; Li, F.; Lei, S. J. et al. Photoflexoelectric effect in halide perovskites. Nat. Mater. 2020, 19, 605–609.

    Article  CAS  Google Scholar 

  26. Katsumata, K. I.; Cordonier, C. E. J.; Shichi, T.; Fujishima, A. Photocatalytic activity of NaNbO3 thin films. J. Am. Ceram. Soc. 2009, 131, 3856–3857.

    CAS  Google Scholar 

  27. Singh, S.; Khare, N. Electrically tuned photoelectrochemical properties of ferroelectric nanostructure NaNbO3 films. Appl. Phys. Lett. 2017, 110, 152902.

    Article  Google Scholar 

  28. Fernandes, D.; Raubach, C. W.; Jardim, P. L. G.; Moreira, M. L.; Cava, S. S. Synthesis of NaNbO3 nanowires and their photocatalytic activity. Ceram. Int. 2021, 47, 10185–10188.

    Article  CAS  Google Scholar 

  29. Singh, S.; Khare, N. Flexible PVDF/Cu/PVDF-NaNbO3 photoanode with ferroelectric properties: An efficient tuning of photoelectrochemical water splitting with electric field polarization and piezophototronic effect. Nano Energy 2017, 42, 173–180.

    Article  CAS  Google Scholar 

  30. Wu, J. S.; Xue, D. F. In situ precursor-template route to semi-ordered NaNbO3 nanobelt arrays. Nanoscale Res. Lett. 2011, 6, 14.

    Article  Google Scholar 

  31. Ji, S. Z.; Liu, H.; Sang, Y. H.; Liu, W.; Yu, G. W.; Leng, Y. H. Synthesis, structure, and piezoelectric properties of ferroelectric and antiferroelectric NaNbO3 nanostructures. CrystEngComm. 2014, 16, 7598–7604.

    Article  CAS  Google Scholar 

  32. Tang, Y. L.; Zhu, Y. L.; Zou, M. J.; Wang, Y. J.; Ma, X. L. Coexisting morphotropic phase boundary and giant strain gradient in BiFeO3 films. J. Appl. Phys. 2021, 129, 184101.

    Article  CAS  Google Scholar 

  33. Jiang, X. N.; Huang, W.; Zhang, S. J. Flexoelectric nano-generator: Materials, structures, and devices. Nano Energy 2013, 2, 1079–1092.

    Article  CAS  Google Scholar 

  34. Ma, W. H.; Cross, L. E. Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 eraamics. Appl. Phys. Lett. 2001, 78, 2920–2921.

    Article  CAS  Google Scholar 

  35. Ma, W. H.; Cross, L. E. Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl. Phys. Lett. 2002, 81, 3440–3442.

    Article  CAS  Google Scholar 

  36. Chu, B. J.; Salem, D. R. Flexoelectricity in several thermoplastic and thermosetting polymers. Appl. Phys. Lett. 2012, 101, 103905.

    Article  Google Scholar 

  37. Clarke, L. J. Low-energy electron diffraction as a surface probe. Philos. Mag. A 2006, 43, 779–802.

    Article  Google Scholar 

  38. Carter, C. B.; Föll, H.; Ast, D. G.; Sass, S. L. Electron diffraction and microscopy studies of the structure of grain boundaries in silicon. Philos. Mag. A 1981, 43, 441–467.

    Article  CAS  Google Scholar 

  39. Gao, P.; Yang, S. Z.; Ishikawa, R.; Li, N.; Feng, B.; Kumamoto, A.; Shibata, N.; Yu, P.; Ikuhara, Y. Atomic-scale measurement of flexoelectric polarization at SrTiO3 dislocations. Phys. Rev. Lett. 2018, 120, 267601.

    Article  CAS  Google Scholar 

  40. Wang, Z. G.; Li, C. C.; Zhang, Z.; Hu, Y. M.; Huang, W. B.; Ke, S. M.; Zheng, R. K.; Li, F.; Shu, L. L. Interplay of defect dipole and flexoelectricity in linear dielectrics. Scr. Mater. 2022, 210, 114427.

    Article  CAS  Google Scholar 

  41. Höfling, M.; Zhou, X. D.; Riemer, L. M.; Bruder, E.; Liu, B. Z.; Zhou, L.; Groszewicz, P. B.; Zhuo, F. P.; Xu, B. X.; Durst, K. et al. Control of polarization in bulk ferroelectrics by mechanical dislocation imprint. Science 2021, 372, 961–964.

    Article  Google Scholar 

  42. Lee, D.; Baek, S. H.; Kim, T. H.; Yoon, J. G.; Folkman, C. M.; Eom, C. B.; Noh, T. W. Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects. Phys. Rev. B 2011, 84, 125305.

    Article  Google Scholar 

  43. Phermpornsakul, Y.; Muensit, S.; Guy, I. L. Determination of piezoelectric and pyroelectric coefficients and thermal diffusivity of 1–3 PZT/epoxy composites. IEEE Trans. Dielect. Electr. Insul. 2004, 11, 280–285.

    Article  CAS  Google Scholar 

  44. Khanbareh, H.; van der Zwaag, S.; Groen, W. A. Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of lead titanate-epoxy composites. Smart Mater. Struct. 2014, 23, 105030.

    Article  Google Scholar 

  45. Kim, S. R.; Choi, S. K.; Lee, H. M. Non-steady-state photovoltaic current in (Pb0.85La0.15)TiO3 and BaTiO3 ceramics. J. Mater. Res. 2000, 15, 1354–1357.

    Article  CAS  Google Scholar 

  46. Biswas, P. P.; Chinthakuntla, T.; Duraisamy, D.; Nambi Venkatesan, G.; Venkatachalam, S.; Murugavel, P. Photovoltaic and photo-capacitance effects in ferroelectric BiFeO3 thin film. Appl. Phys. Lett. 2017, 110, 192906.

    Article  Google Scholar 

  47. Scott, J. F.; Watanabe, K.; Hartmann, A. J.; Lamb, R. N. Device models for PZT/PT, BST/PT, SBT/PT, and SBT/BI ferroelectric memories. Ferroelectrics 1999, 225, 83–90.

    Article  Google Scholar 

  48. Qiao, S.; Chen, M. J.; Wang, Y.; Liu, J. H.; Lu, J. F.; Li, F. T.; Fu, G. S.; Wang, S. F.; Ren, K. L.; Pan, C. F. Ultrabroadband, large sensitivity position sensitivity detector based on a Bi2Te2.7Se0.3/Si heterojunction and its performance improvement by pyro-phototronic effect. Adv. Electron. Mater. 2019, 5, 1900786.

    Article  CAS  Google Scholar 

  49. Shiratori, Y.; Magrez, A.; Kasezawa, K.; Kato, M.; Röhrig, S.; Peter, F.; Pithan, C.; Waser, R. Noncentrosymmetric phase of submicron NaNbO3 crystallites. J. Electroceram. 2007, 19, 273–280.

    Article  CAS  Google Scholar 

  50. Shiratori, Y.; Magrez, A.; Kato, M.; Kasezawa, K.; Pithan, C.; Waser, R. Pressure-induced phase transitions in micro-, submicro-, and nanocrystalline NaNbO3. J. Phys. Chem. C 2008, 122, 9610–9616.

    Article  Google Scholar 

  51. Liu, W. H.; Wang, H.; Li, K. C. An aqueous solution-gel method for low temperature synthesis of nanocrystalline NaNbO3 and their ceramics. J. Sol-Gel Sci. Technol. 2010, 55, 229–234.

    Article  CAS  Google Scholar 

  52. Paula, A. J.; Zaghete, M. A.; Longo, E.; Varela, J. A. Microwave-assisted hydrothermal synthesis of structurally and morphologically controlled sodium niobates by using niobic acid as a precursor. Eur. J. Inorg. Chem. 2008, 2008, 1300–1308.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research & Development project from the Ministry of Science and Technology in China (No. 2021YFB3200303). It was also partially supported by the National Natural Science Foundation of China (No. 52172082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Lin Wang or Kailiang Ren.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Tian, J., Jiang, F. et al. Flexoelectricity-enhanced photovoltaic effect in trapezoid-shaped NaNbO3 nanotube array composites. Nano Res. 16, 11914–11924 (2023). https://doi.org/10.1007/s12274-023-5854-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5854-0

Keywords

Navigation