Skip to main content
Log in

The effect of lateral growth of self-assembled GaN microdisks on UV lasing action

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

There are significant differences in the extent of impurity incorporation on different crystallographic directions of GaN microstructures, and the impurity-related deep energy level behavior will have a significant impact on device performance. However, a comprehensive understanding of the effect of lateral growth on device performance has not been achieved due to the lack of comprehensive spatial distribution characterization of the optical behavior and impurity incorporation in GaN microstructures. We present a comprehensive study of the optical behavior and growth mechanism of self-assembled GaN microdisks using nanoscale spatially resolved cathodoluminescence (CL) mapping. We have found a clear growth orientation-dependent optical behavior of the lateral and vertical growth sectors of self-assembled GaN microcrystals. The lateral growth sector, i.e., the \(\{10\bar{1}1\}\) sector, forms six side facets of the microdisk and shows significant near-bandgap emission (NBE) and weak deep energy level luminescence. Cavity effect enhanced emission was found for the first time in such a truncated hexagonal Na-flux GaN microdisk system with an ultra-smooth surface (Ra < 0.7 nm) and low stress. The self-assembled microdisk shows significant ultraviolet (UV) lasing action (main lasing peak wavelength 370.9 nm, quality factor 1278, threshold 6 × 104 µJ/cm2) under pulsed optical pumping. We believe that the appearance of UV lasing action may be related to the light limitation on the six side facets of the lateral growth of the GaN microdisk, the high structural quality, the low content of deep energy level defects, the low surface roughness, and the low stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakamura, S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 1998, 281, 956–961.

    CAS  Google Scholar 

  2. Fasol, G. Room-temperature blue gallium nitride laser diode. Science 1996, 272, 1751–1752.

    CAS  Google Scholar 

  3. Yang, S.; Song, H. F.; Peng, Y.; Zhao, L.; Tong, Y. Z.; Kang, F. Y.; Xu, M. S.; Sun, B.; Wang, X. Q. Reduced thermal boundary conductance in GaN-based electronic devices introduced by metal bonding layer. Nano Res. 2021, 14, 3616–3620.

    CAS  Google Scholar 

  4. Long, H.; Wei, Y.; Yu, T. J.; Wang, Z.; Jia, C. Y.; Yang, Z. J.; Zhang, G. Y.; Fan, S. S. Modulating lateral strain in GaN-based epitaxial layers by patterning sapphire substrates with aligned carbon nanotube films. Nano Res. 2012, 5, 646–653.

    CAS  Google Scholar 

  5. Iwinska, M.; Sochacki, T.; Amilusik, M.; Kempisty, P.; Lucznik, B.; Fijalkowski, M.; Litwin-Staszewska, E.; Smalc-Koziorowska, J.; Khapuridze, A.; Staszczak, G. et al. Homoepitaxial growth of HVPE-GaN doped with Si. J. Cryst. Growth 2016, 456, 91–96.

    CAS  Google Scholar 

  6. Hofmann, P.; Krupinski, M.; Habel, F.; Leibiger, G.; Weinert, B.; Eichler, S.; Mikolajick, T. Novel approach for n-type doping of HVPE gallium nitride with germanium. J. Cryst. Growth 2016, 450, 61–65.

    CAS  Google Scholar 

  7. Zvanut, M. E.; Dashdorj, J.; Freitas, J. A.; Glaser, E. R.; Willoughby, W. R.; Leach, J. H.; Udwary, K. Incorporation of Mg in free-standing HVPE GaN substrates. J. Electron. Mater. 2016, 45, 2692–2696.

    CAS  Google Scholar 

  8. Richter, E.; Gridneva, E.; Weyers, M.; Tränkle, G. Fe-doping in hydride vapor-phase epitaxy for semi-insulating gallium nitride. J. Cryst. Growth 2016, 456, 97–100.

    CAS  Google Scholar 

  9. Zhang, R.; Kuech, T. F. Photoluminescence of carbon in situ doped GaN grown by halide vapor phase epitaxy. Appl. Phys. Lett. 1998, 72, 1611–1613.

    CAS  Google Scholar 

  10. Iwinska, M.; Piotrzkowski, R.; Litwin-Staszewska, E.; Sochacki, T.; Amilusik, M.; Fijalkowski, M.; Lucznik, B.; Bockowski, M. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds. Appl. Phys. Express 2017, 10, 011003.

    Google Scholar 

  11. Waltereit, P.; Brandt, O.; Trampert, A.; Grahn, H. T.; Menniger, J.; Ramsteiner, M.; Reiche, M.; Ploog, K. H. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 2000, 406, 865–868.

    CAS  Google Scholar 

  12. Zhang, M.; Shi, J. J. Exciton states and optical transitions in InGaN/GaN quantum dot nanowire heterostructures: Strong built-in electric field and dielectric mismatch effects. J. Lumin. 2011, 131, 1908–1912.

    CAS  Google Scholar 

  13. Monemar, B. Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev. B 1974, 10, 676–681.

    CAS  Google Scholar 

  14. Jiang, J. A.; Xu, H. Q.; Sheikhi, M.; Li, L.; Yang, Z. H.; Hoo, J.; Guo, S. P.; Zeng, Y. H.; Guo, W.; Ye, J. C. Omnidirectional whispering-gallery-mode lasing in GaN microdisk obtained by selective area growth on sapphire substrate. Opt. Express 2019, 27, 16195–16205.

    CAS  Google Scholar 

  15. Baek, H.; Lee, C. H.; Chung, K.; Yi, G. C. Epitaxial GaN microdisk lasers grown on graphene microdots. Nano Lett. 2013, 13, 2782–2785.

    CAS  Google Scholar 

  16. He, G.; Qin, F. F.; Xu, C. X.; Wang, C.; Xu, Y.; Cao, B.; Xu, K. Double-triangular whispering-gallery mode lasing from a hexagonal GaN microdisk grown on graphene. J. Mater. Sci. Technol. 2020, 53, 140–145.

    CAS  Google Scholar 

  17. Zong, H.; Yang, Y.; Ma, C.; Feng, X. H.; Wei, T. T.; Yang, W.; Li, J. C.; Li, J. Z.; You, L. P.; Zhang, J. et al. Flexibly and repeatedly modulating lasing wavelengths in a single core–shell semiconductor microrod. ACS Nano 2017, 11, 5808–5814.

    CAS  Google Scholar 

  18. Peng, Y. Y.; Lu, J. F.; Peng, D. F.; Ma, W. D.; Li, F. T.; Chen, Q. S.; Wang, X. D.; Sun, J. L.; Liu, H. T.; Pan, C. F. Dynamically modulated GaN whispering gallery lasing mode for strain sensor. Adv. Funct. Mater. 2019, 29, 1905051.

    CAS  Google Scholar 

  19. Wang, X. F.; Peng, W. B.; Yu, R. M.; Zou, H. Y.; Dai, Y. J.; Zi, Y. L.; Wu, C. S.; Li, S. T.; Wang, Z. L. Simultaneously enhancing light emission and suppressing efficiency droop in GaN microwire-based ultraviolet light-emitting diode by the piezo-phototronic effect. Nano Lett. 2017, 17, 3718–3724.

    CAS  Google Scholar 

  20. Jeong, J.; Jin, D. K.; Choi, J.; Jang, J.; Kang, B. K.; Wang, Q. X.; Park, W. I.; Jeong, M. S.; Bae, B. S.; Yang, W. S. et al. Transferable, flexible white light-emitting diodes of GaN p-n junction microcrystals fabricated by remote epitaxy. Nano Energy 2021, 86, 106075.

    CAS  Google Scholar 

  21. Ryu, J. E.; Park, S.; Park, Y.; Ryu, S. W.; Hwang, K.; Jang, H. W. Technological breakthroughs in chip fabrication, transfer, and color conversion for high-performance micro-LED displays. Adv. Mater., in press, https://doi.org/10.1002/adma.202204947.

  22. Liu, T.; Li, D.; Hu, H.; Huang, X.; Zhao, Z. F.; Sha, W.; Jiang, C. Y.; Du, C. H.; Liu, M. M.; Pu, X. et al. Piezo-phototronic effect in InGaN/GaN semi-floating micro-disk LED arrays. Nano Energy 2020, 67, 104218.

    CAS  Google Scholar 

  23. Journot, T.; Bouchiat, V.; Gayral, B.; Dijon, J.; Hyot, B. Self-assembled UV photodetector made by direct epitaxial GaN growth on graphene. ACS Appl. Mater. Interfaces 2018, 10, 18857–18862.

    CAS  Google Scholar 

  24. Choi, S.; Song, H. G.; Cho, S.; Cho, Y. H. Orthogonally polarized, dual-wavelength quantum wire network emitters embedded in single microrod. Nano Lett. 2019, 19, 8454–8460.

    CAS  Google Scholar 

  25. Hua, Q. L.; Sun, J. L.; Liu, H. T.; Cui, X.; Ji, K. Y.; Guo, W. B.; Pan, C. F.; Hu, W. G.; Wang, Z. L. Flexible GaN microwire-based piezotronic sensory memory device. Nano Energy 2020, 78, 105312.

    CAS  Google Scholar 

  26. Chang, A. S.; Li, B. J.; Wang, S. Z.; Frisone, S.; Goldman, R. S.; Han, J.; Lauhon, L. J. Unveiling the influence of selective-area-regrowth interfaces on local electronic properties of GaN p-n junctions for efficient power devices. Nano Energy 2022, 102, 107689.

    CAS  Google Scholar 

  27. Van Treeck, D.; Calabrese, G.; Goertz, J. J. W.; Kaganer, V. M.; Brandt, O.; Fernández-Garrido, S.; Geelhaar, L. Self-assembled formation of long, thin, and uncoalesced GaN nanowires on crystalline TiN films. Nano Res. 2018, 11, 565–576.

    CAS  Google Scholar 

  28. Schuster, F.; Furtmayr, F.; Zamani, R.; Magén, C.; Morante, J. R.; Arbiol, J.; Garrido, J. A.; Stutzmann, M. Self-assembled GaN nanowires on diamond. Nano Lett. 2012, 12, 2199–2204.

    CAS  Google Scholar 

  29. Fernández-Garrido, S.; Kaganer, V. M.; Sabelfeld, K. K.; Gotschke, T.; Grandal, J.; Calleja, E.; Geelhaar, L.; Brandt, O. Self-regulated radius of spontaneously formed GaN nanowires in molecular beam epitaxy. Nano Lett. 2011, 13, 3274–3280.

    Google Scholar 

  30. Hetzl, M.; Kraut, M.; Hoffmann, T.; Stutzmann, M. Polarity control of heteroepitaxial GaN nanowires on diamond. Nano Lett. 2017, 17, 3582–3590.

    CAS  Google Scholar 

  31. Beeler, M.; Hille, P.; Schörmann, J.; Teubert, J.; De La Mata, M.; Arbiol, J.; Eickhoff, M.; Monroy, E. Intraband absorption in self-assembled Ge-doped GaN/AlN nanowire heterostructures. Nano Lett. 2014, 14, 1665–1673.

    CAS  Google Scholar 

  32. Minj, A.; Cros, A.; Garro, N.; Colchero, J.; Auzelle, T.; Daudin, B. Assessment of polarity in GaN self-assembled nanowires by electrical force microscopy. Nano Lett. 2015, 15, 6770–6776.

    CAS  Google Scholar 

  33. Lo, I.; Hsieh, C. H.; Hsu, Y. C.; Pang, W. Y.; Chou, M. C. Self-assembled GaN hexagonal micropyramid and microdisk. Appl. Phys. Lett. 2009, 94, 062105.

    Google Scholar 

  34. Lo, I.; Wang, Y. C.; Hsu, Y. C.; Shih, C. H.; Pang, W. Y.; You, S. T.; Hu, C. H.; Chou, M. M. C.; Hsu, G. Z. L. Electrical contact for wurtzite GaN microdisks. Appl. Phys. Lett. 2014, 105, 082101.

    Google Scholar 

  35. Wang, P.; Wang, X. Q.; Wang, T.; Tan, C. S.; Sheng, B. W.; Sun, X. X.; Li, M.; Rong, X.; Zheng, X. T.; Chen, Z. Y. et al. Lattice-symmetry-driven epitaxy of hierarchical GaN nanotripods. Adv. Funct. Mater. 2017, 27, 1604854.

    Google Scholar 

  36. Chen, L.; Sheng, B. W.; Sheng, S. S.; Wang, P.; Sun, X. X.; Li, D.; Wang, T.; Tao, R. C.; Liu, S. F.; Chen, Z. Y. et al. Room temperature triggered single photon emission from self-assembled GaN/AlN quantum dot in nanowire. Adv. Funct. Mater. 2022, 32, 2208340.

    CAS  Google Scholar 

  37. Liu, B. D.; Liu, Q. Y.; Yang, W. J.; Li, J.; Labbé, C.; Portier, X.; Zhang, X. L.; Yao, J. L. Homoepitaxial growth of high-quality GaN nanoarrays for enhanced UV luminescence. CrystEngComm 2022, 24, 2472–2478.

    CAS  Google Scholar 

  38. Li, H.; Chin, A. H.; Sunkara, M. K. Direction-dependent homoepitaxial growth of GaN nanowires. Adv. Mater. 2006, 18, 216–220.

    CAS  Google Scholar 

  39. Si, Z. W.; Liu, Z. L.; Hu, Y. Q.; Zheng, S. A.; Dong, X. M.; Gao, X. D.; Wang, J. F.; Xu, K. Growth behavior and stress distribution of bulk GaN grown by Na-flux with HVPE GaN seed under near-thermodynamic equilibrium. Appl. Surf. Sci. 2022, 578, 152073.

    CAS  Google Scholar 

  40. Chen, K. M.; Yeh, Y. H.; Wu, Y. H.; Chiang, C. H.; Yang, D. R.; Gao, Z. S.; Chao, C. L.; Chi, T. W.; Fang, Y. H.; Tsay, J. D. et al. Stress and defect distribution of thick GaN film homoepitaxially regrown on free-standing GaN by hydride vapor phase epitaxy. Jpn. J. Appl. Phys. 2010, 49, 091001.

    Google Scholar 

  41. Imade, M.; Imanishi, M.; Todoroki, Y.; Imabayashi, H.; Matsuo, D.; Murakami, K.; Takazawa, H.; Kitamoto, A.; Maruyama, M.; Yoshimura, M. et al. Fabrication of low-curvature 2 in. GaN wafers by Na-flux coalescence growth technique. Appl. Phys. Express 2014, 7, 035503.

    CAS  Google Scholar 

  42. Kawamura, F.; Tanpo, M.; Miyoshi, N.; Imade, M.; Yoshimura, M.; Mori, Y.; Kitaoka, Y.; Sasaki, T. Growth of GaN single crystals with extremely low dislocation density by two-step dislocation reduction. J. Cryst. Growth 2009, 311, 3019–3024.

    CAS  Google Scholar 

  43. Mori, Y.; Kitaoka, Y.; Imade, M.; Miyoshi, N.; Yoshimura, M.; Sasaki, T. Growth of bulk GaN crystals by Na flux method. Phys. Status Solidi C 2011, 8, 1445–1449.

    CAS  Google Scholar 

  44. Mori, Y.; Imade, M.; Maruyama, M.; Yoshimura, M. Growth of GaN crystals by Na flux method. ECS J. Solid State Sci. Technol. 2011, 2, N3068–N3071.

    Google Scholar 

  45. Si, Z. W.; Liu, Z. L.; Gu, H.; Dong, X. M.; Gao, X. D.; Ren, Y. J.; Wang, X.; Wang, J. F.; Xu, K. Study on the stress and mechanism of self-separated GaN grown by Na-flux method. Appl. Phys. Express 2021, 14, 035501.

    CAS  Google Scholar 

  46. Imanishi, M.; Yoshida, T.; Kitamura, T.; Murakami, K.; Imade, M.; Yoshimura, M.; Shibata, M.; Tsusaka, Y.; Matsui, J.; Mori, Y. Homoepitaxial hydride vapor phase epitaxy growth on GaN wafers manufactured by the Na-flux method. Cryst. Growth Des. 2017, 17, 3806–3811.

    CAS  Google Scholar 

  47. Lee, S.; Kim, J.; Oh, J.; Ryu, J.; Hwang, K.; Hwang, J.; Kang, S.; Choi, J. H.; Sim, Y. C.; Cho, Y. H. et al. A discrete core–shell-like micro-light-emitting diode array grown on sapphire nano-membranes. Sci. Rep. 2020, 10, 7506.

    Google Scholar 

  48. Wang, G.; Yuan, W. X.; Jian, J. K.; Bao, H. Q.; Wang, J. F.; Chen, X. L.; Liang, J. K. Growth of GaN single crystals by Ca3N2 flux. Scr. Mater. 2008, 58, 319–322.

    CAS  Google Scholar 

  49. Si, Z. W.; Liu, Z. L.; Hu, Y. Q.; Wang, X. X.; Xu, C. X.; Zheng, S. N.; Dong, X. M.; Gao, X. D.; Chen, J. J.; Wang, J. F. et al. Yellow-green luminescence due to polarity-dependent incorporation of carbon impurities in self-assembled GaN microdisk. Nano Lett. 2022, 22, 8670–8678.

    CAS  Google Scholar 

  50. Chung, K.; Yoo, H.; Hyun, J. K.; Oh, H.; Tchoe, Y.; Lee, K.; Baek, H.; Kim, M.; Yi, G. C. Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots. Adv. Mater. 2016, 28, 7688–7694.

    CAS  Google Scholar 

  51. Lin, Y. T.; Yeh, T. W.; Nakajima, Y.; Dapkus, P. D. Catalyst-free GaN nanorods synthesized by selective area growth. Adv. Funct. Mater. 2014, 24, 3162–3171.

    CAS  Google Scholar 

  52. Gačević, Ž.; Sanchez, D. G.; Calleja, E. Formation mechanisms of GaN nanowires grown by selective area growth homoepitaxy. Nano Lett. 2015, 15, 1117–1121.

    Google Scholar 

  53. Gradečak, S.; Qian, F.; Li, Y.; Park, H. G.; Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 2005, 87, 173111.

    Google Scholar 

  54. Gu, H.; Liu, Z. L.; Dong, X. M.; Gao, X. D.; Tian, F. F.; Wang, J. F.; Xu, K. Investigation of oxygen impurity in different growth zones of GaN crystal grown by Na-flux method. J. Cryst. Growth 2020, 544, 125702.

    CAS  Google Scholar 

  55. Si, Z. W.; Liu, Z. L.; Gu, H.; Ren, Y. J.; Dong, X. M.; Gao, X. D.; Wang, J. F.; Xu, K. Stress evolution in different growth mechanism of GaN grown by Na-flux method. Jpn. J. Appl. Phys. 2020, 59, 110901.

    CAS  Google Scholar 

  56. Si, Z. W.; Liu, Z. L.; Zheng, S. N.; Dong, X. M.; Gao, X. D.; Wang, J. F.; Xu, K. Yellow luminescence and carrier distribution due to polarity-dependent incorporation of carbon impurities in bulk GaN by Na flux. J. Lumin 2023, 255, 119566.

    CAS  Google Scholar 

  57. Utsumi, W.; Saitoh, H.; Kaneko, H.; Watanuki, T.; Aoki, K.; Shimomura, O. Congruent melting of gallium nitride at 6 GPa and its application to single-crystal growth. Nat. Mater. 2003, 2, 735–738.

    CAS  Google Scholar 

  58. Liu, Z. L.; Ren, G. Q.; Shi, L.; Su, X. J.; Wang, J. F.; Xu, K. Effect of carbon types on the generation and morphology of GaN polycrystals grown using the Na flux method. CrystEngComm 2015, 17, 1030–1036.

    CAS  Google Scholar 

  59. Kawamura, F.; Morishita, M.; Tanpo, M.; Imade, M.; Yoshimura, M.; Kitaoka, Y.; Mori, Y.; Sasaki, T. Effect of carbon additive on increases in the growth rate of 2 in. GaN single crystals in the Na flux method. J. Cryst. Growth 2008, 310, 3946–3949.

    CAS  Google Scholar 

  60. Zhao, B. J.; Lockrey, M. N.; Wang, N. Y.; Caroff, P.; Yuan, X. M.; Li, L.; Wong-Leung, J.; Tan, H. H.; Jagadish, C. Highly regular rosette-shaped cathodoluminescence in GaN self-assembled nanodisks and nanorods. Nano Res. 2020, 13, 2500–2505.

    CAS  Google Scholar 

  61. Tamboli, A. C.; Schmidt, M. C.; Hirai, A.; DenBaars, S. P.; Hu, E. L. Observation of whispering gallery modes in nonpolar m-plane GaN microdisks. Appl. Phys. Lett. 2009, 94, 251116.

    Google Scholar 

  62. Kouno, T.; Kishino, K.; Sakai, M. Lasing action on whispering gallery mode of self-organized GaN hexagonal microdisk crystal fabricated by RF-plasma-assisted molecular beam epitaxy. IEEE J. Quantum Electron. 2011, 47, 1565–1570.

    CAS  Google Scholar 

  63. Tessarek, C.; Goldhahn, R.; Sarau, G.; Heilmann, M.; Christiansen, S. Carrier-induced refractive index change observed by a whispering gallery mode shift in GaN microrods. New J. Phys. 2015, 17, 083047.

    Google Scholar 

  64. Coulon, P. M.; Hugues, M.; Alloing, B.; Beraudo, E.; Leroux, M.; Zuniga-Perez, J. GaN microwires as optical microcavities: Whispering gallery modes vs. Fabry-Perot modes. Opt. Express 2012, 20, 18707–18716.

    CAS  Google Scholar 

  65. Baek, H.; Hyun, J. K.; Chung, K.; Oh, H.; Yi, G. C. Selective excitation of Fabry-Perot or whispering-gallery mode-type lasing in GaN microrods. Appl. Phys. Lett. 2014, 105, 201108.

    Google Scholar 

  66. Lyons, J. L.; Janotti, A.; Van De Walle, C. G. Effects of carbon on the electrical and optical properties of InN, GaN, and AlN. Phys. Rev. B 2014, 89, 035204.

    Google Scholar 

  67. Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Y. Carbon defects as sources of the green and yellow luminescence bands in undoped GaN. Phys. Rev. B 2014, 90, 235203.

    Google Scholar 

  68. Reshchikov, M. A.; Morkoç, H.; Park, S. S.; Lee, K. Y. Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study. Appl. Phys. Lett. 2002, 81, 4970–4972.

    CAS  Google Scholar 

  69. Reshchikov, M. A.; Morkoç, H.; Park, S. S.; Lee, K. Y. Yellow and green luminescence in a freestanding GaN template. Appl. Phys. Lett. 2001, 78, 3041–3043.

    CAS  Google Scholar 

  70. Xie, Z. J.; Sui, Y.; Buckeridge, J.; Sokol, A. A.; Keal, T. W.; Walsh, A. Prediction of multiband luminescence due to the gallium vacancy-oxygen defect complex in GaN. Appl. Phys. Lett. 2018, 112, 262104.

    Google Scholar 

  71. Xu, S. R.; Hao, Y.; Zhang, J. C.; Jiang, T.; Yang, L. N.; Lu, X. L.; Lin, Z. Y. Yellow luminescence of polar and nonpolar GaN nanowires on r-plane sapphire by metal organic chemical vapor deposition. Nano Lett. 2013, 13, 3654–3657.

    CAS  Google Scholar 

  72. Sekiguchi, T.; Lee, W.; Luo, X. J.; Kimura, T.; Cho, Y. Cathodoluminescence study of killer defects in GaN wafers on sapphire substrates. Phys. Status Solidi C 2017, 14, 1700054.

    Google Scholar 

  73. Lee, W.; Watanabe, K.; Kumagai, K.; Park, S.; Lee, H.; Yao, T.; Chang, J.; Sekiguchi, T. Cathodoluminescence study of nonuniformity in hydride vapor phase epitaxy-grown thick GaN films. J. Electron Microsc. 2012, 61, 25–30.

    CAS  Google Scholar 

  74. Lee, S. C.; Sun, X. Y.; Hersee, S. D.; Brueck, S. R. J. Orientation-dependent nucleation of GaN on a nanoscale faceted Si surface. J. Cryst. Growth 2005, 279, 289–292.

    CAS  Google Scholar 

  75. Kung, P.; Walker, D.; Hamilton, M.; Diaz, J.; Razeghi, M. Lateral epitaxial overgrowth of GaN films on sapphire and silicon substrates. Appl. Phys. Lett. 1999, 74, 570–572.

    CAS  Google Scholar 

  76. Kawamura, T.; Akiyama, T.; Kitamoto, A.; Imanishi, M.; Yoshimura, M.; Mori, Y.; Morikawa, Y.; Kangawa, Y.; Kakimoto, K. Absolute surface energies of oxygen-adsorbed GaN surfaces. J. Cryst. Growth 2020, 549, 125868.

    CAS  Google Scholar 

  77. Cruz, S. C.; Keller, S.; Mates, T. E.; Mishra, U. K.; DenBaars, S. P. Crystallographic orientation dependence of dopant and impurity incorporation in GaN films grown by metalorganic chemical vapor deposition. J. Cryst. Growth 2009, 311, 3817–3823.

    CAS  Google Scholar 

  78. Zywietz, T. K.; Neugebauer, J.; Scheffler, M. The adsorption of oxygen at GaN surfaces. Appl. Phys. Lett. 1999, 74, 1695–1697.

    CAS  Google Scholar 

  79. Li, X.; Coleman, J. J. Depth-resolved and excitation power dependent cathodoluminescence study of GaN films grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 1997, 70, 438–440.

    CAS  Google Scholar 

  80. Fleischer, K.; Toth, M.; Phillips, M. R.; Zou, J.; Li, G.; Chua, S. J. Depth profiling of GaN by cathodoluminescence microanalysis. Appl. Phys. Lett. 1999, 74, 1114–1116.

    CAS  Google Scholar 

  81. Kanaya, K.; Okayama, S. Penetration and energy-loss theory of electrons in solid targets. J. Phys. D: Appl. Phys. 1972, 5, 43–58.

    CAS  Google Scholar 

  82. Imanishi, M.; Murakami, K.; Imabayashi, H.; Takazawa, H.; Todoroki, Y.; Matsuo, D.; Maruyama, M.; Imade, M.; Yoshimura, M.; Mori, Y. Coalescence growth of dislocation-free GaN crystals by the Na-flux method. Appl. Phys. Express 2012, 5, 095501.

    Google Scholar 

  83. Imade, M.; Murakami, K.; Matsuo, D.; Imabayashi, H.; Takazawa, H.; Todoroki, Y.; Kitamoto, A.; Maruyama, M.; Yoshimura, M.; Mori, Y. Centimeter-sized bulk GaN single crystals grown by the Na-flux method with a necking technique. Cryst. Growth Des. 2012, 12, 3799–3805.

    CAS  Google Scholar 

  84. Mahadik, N. A.; Qadri, S. B.; Freitas, J. A. Jr. Structural inhomogeneities and impurity incorporation in growth of high-quality ammonothermal GaN substrates. Cryst. Growth Des. 2015, 15, 291–294.

    CAS  Google Scholar 

  85. Sintonen, S.; Wahl, S.; Richter, S.; Meyer, S.; Suihkonen, S.; Schulz, T.; Irmscher, K.; Danilewsky, A. N.; Tuomi, T. O.; Stankiewicz, R. et al. Evolution of impurity incorporation during ammonothermal growth of GaN. J. Cryst. Growth 2016, 456, 51–57.

    CAS  Google Scholar 

  86. Feng, D.; Ming, N. B.; Hong, J. F.; Yang, Y. S.; Zhu, J. S.; Yang, Z.; Wang, Y. N. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Appl. Phys. Lett. 1980, 37, 607–609.

    CAS  Google Scholar 

  87. Lin, Z. Y.; Zhang, J. C.; Xu, S. R.; Chen, Z. B.; Yang, S. Y.; Tian, K.; Su, X. J.; Shi, X. F.; Hao, Y. Influence of vicinal sapphire substrate on the properties of N-polar GaN films grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 2014, 105, 082114.

    Google Scholar 

  88. Yang, J.; Zhao, D. G.; Jiang, D. S.; Chen, P.; Liu, Z. S.; Zhu, J. J.; Li, X. J.; He, X. G.; Liu, J. P.; Zhang, L. Q. et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes. Opt. Express 2016, 24, 13824–13831.

    CAS  Google Scholar 

  89. Czekalla, C.; Sturm, C.; Schmidt-Grund, R.; Cao, B. Q.; Lorenz, M.; Grundmann, M. Whispering gallery mode lasing in zinc oxide microwires. Appl. Phys. Lett. 2008, 92, 241102.

    Google Scholar 

  90. Chen, R.; Ling, B.; Sun, X. W.; Sun, H. D. Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks. Adv. Mater. 2011, 23, 2199–2204.

    CAS  Google Scholar 

  91. Choi, H. W.; Hui, K. N.; Lai, P. T.; Chen, P.; Zhang, X. H.; Tripathy, S.; Teng, J. H.; Chua, S. J. Lasing in GaN microdisks pivoted on Si. Appl. Phys. Lett. 2006, 59, 211101.

    Google Scholar 

  92. Zi, H.; Cheung, Y. F.; Damilano, B.; Frayssinet, E.; Alloing, B.; Duboz, J. Y.; Boucaud, P.; Semond, F.; Choi, H. W. Influence of surface roughness on the lasing characteristics of optically pumped thin-film GaN microdisks. Opt. Lett. 2022, 47, 1521–1524.

    CAS  Google Scholar 

  93. Mei, Y.; Xie, M. C.; Long, H.; Ying, L. Y.; Zhang, B. P. Low threshold GaN-based microdisk lasers on silicon with high Q factor. J. Lightwave Technol. 2022, 40, 2952–2958.

    CAS  Google Scholar 

  94. Navid, I. A.; Pandey, A.; Goh, Y. M.; Schwartz, J.; Hovden, R.; Mi, Z. T. GaN-based deep-nano structures: Break the efficiency bottleneck of conventional nanoscale optoelectronics. Adv. Opt. Mater. 2022, 10, 2102263.

    CAS  Google Scholar 

  95. Tawfik, W. Z.; Song, J.; Lee, J. J.; Ha, J. S.; Ryu, S. W.; Choi, H. S.; Ryu, B.; Lee, J. K. Effect of external tensile stress on blue InGaN/GaN multi-quantum-well light-emitting diodes. Appl. Surf. Sci. 2013, 283, 727–731.

    CAS  Google Scholar 

  96. Cho, S. I.; Chang, K.; Kwon, M. S. Strain analysis of a GaN epilayer grown on a c-plane sapphire substrate with different growth times. J. Mater. Sci. 2007, 42, 3569–3572.

    CAS  Google Scholar 

  97. Chen, J. W.; Chen, Y. F.; Lu, H.; Schaff, W. J. Cross-sectional Raman spectra of InN epifilms. Appl. Phys. Lett. 2005, 87, 041907.

    Google Scholar 

  98. Schustek, P.; Hocker, M.; Klein, M.; Simon, U.; Scholz, F.; Thonke, K. Spectroscopic study of semipolar 1122-HVPE GaN exhibiting high oxygen incorporation. J. Appl. Phys. 2014, 116, 163515.

    Google Scholar 

  99. Johnson, J. C.; Choi, H. J.; Knutsen, K. P.; Schaller, R. D.; Yang, P. D.; Saykally, R. J. Single gallium nitride nanowire lasers. Nat. Mater. 2002, 1, 106–110.

    CAS  Google Scholar 

  100. Lo, M. H.; Cheng, Y. J.; Kuo, H. C.; Wang, S. C. Enhanced electron-hole plasma stimulated emission in optically pumped gallium nitride nanopillars. Appl. Phys. Lett. 2011, 98, 121101.

    Google Scholar 

  101. Lo, M. H.; Cheng, Y. J.; Kuo, H. C.; Wang, S. C. Enhanced stimulated emission from optically pumped gallium nitride nanopillars. Appl. Phys. Express 2011, 4, 022102.

    Google Scholar 

  102. Guo, Z.; Zhao, D. X.; Liu, Y. C.; Shen, D. Z.; Yao, B.; Zhang, Z. Z.; Li, B. H.; Guo, Z.; Liu, Y. C. Electrically pumped single-mode lasing emission of self-assembled n-ZnO microcrystalline film/p-GaN heterojunction diode. J. Phys. Chem. C 2010, 114, 15499–15503.

    CAS  Google Scholar 

  103. Luo, X. X.; Cai, Y.; Wang, Y. S.; Chen, Z. Y.; Liu, F.; Zhang, L.; Zhang, Y. P.; Li, F. Fully deterministic analysis on photonic whispering-gallery modes of irregular polygonal microcavities with testing in hexagons. Phys. Rev. A 2021, 103, L031503.

    CAS  Google Scholar 

  104. Lozac’h, M.; Nakano, Y.; Sang, L. W.; Sakoda, K.; Sumiya, M. Study of defect levels in the band gap for a thick InGaN film. Jpn. J. Appl. Phys. 2012, 51, 121001.

    Google Scholar 

  105. Kucheyev, S. O.; Toth, M.; Phillips, M. R.; Williams, J. S.; Jagadish, C.; Li, G. Chemical origin of the yellow luminescence in GaN. J. Appl. Phys. 2002, 91, 5867–5874.

    CAS  Google Scholar 

  106. Zhang, H. S.; Shi, L.; Yang, X. B.; Zhao, Y. J.; Xu, K.; Wang, L. W. First-principles calculations of quantum efficiency for point defects in semiconductors: The example of yellow luminance by GaN: CN + ON and GaN: CN. Adv. Opt. Mater. 2017, 5, 1700404.

    Google Scholar 

  107. Zhao, D. G. 6.2: Invited paper: Effect of carbon impurity on the performance of GaN-based laser diodes. SID Symp. Digest Tech. Papers 2021, 52, 117–118.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. JueMin Yi and Dr. Miao Wang in Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (SINANO) for valuable discussions. This work was supported by the National Key R&D Program of China (No. 2021YFB3602000) and the Fundamental Research Funds for the Central Universities (No. WK5290000003). The authors are grateful for the technical support for Nano-X from SINANO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongliang Liu, Jianfeng Wang or Ke Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Z., Liu, Z., Wang, X. et al. The effect of lateral growth of self-assembled GaN microdisks on UV lasing action. Nano Res. 16, 11096–11106 (2023). https://doi.org/10.1007/s12274-023-5845-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5845-1

Keywords

Navigation