Skip to main content
Log in

Interlayer friction behavior of molybdenum ditelluride with different structures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The interlayer friction behavior of two-dimensional transition metal dichalcogenides (TMDCs) as crucial solid lubricants has attracted extensive attention in the field of tribology. In this study, the interlayer friction is measured by laterally pushing the MoTe2 powder on the MoTe2 substrate with the atomic force microscope (AFM) tip, and density functional theory (DFT) simulations are used to rationalize the experimental results. The experimental results indicate that the friction coefficient of the 1T′-MoTe2/1T′-MoTe2 interface is 2.025 × 10−4, which is lower than that of the 2H-MoTe2/2H-MoTe2 interface (3.086 × 10−4), while the friction coefficient of the 1T′-MoTe2/2H-MoTe2 interface is the lowest at 6.875 × 10−5. The lower interfacial friction of 1T′-MoTe2/1T′-MoTe2 compared to 2H-MoTe2/2H-MoTe2 interface can be explained by considering the relative magnitudes of the ideal average shear strengths and maximum shear strengths based on the interlayer potential energy. Additionally, the smallest interlayer friction observed at the 1T′-MoTe2/2H-MoTe2 heterojunction is attributed to the weak interlayer electrostatic interaction and reduction in potential energy corrugation caused by the incommensurate contact. This work suggests that MoTe2 has comparable interlayer friction properties to MoS2 and is expected to reduce interlayer friction in the future by inducing the 2H-1T′ phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan, K.; Tareen, A. K.; Aslam, M.; Wang, R. H.; Zhang, Y. P.; Mahmood, A.; Ouyang, Z. B.; Zhang, H.; Guo, Z. Y. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440.

    CAS  Google Scholar 

  2. Zhu, S.; Ni, J. F.; Li, Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 2020, 13, 1825–1841.

    CAS  Google Scholar 

  3. Chia, X.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909–921.

    CAS  Google Scholar 

  4. Zhan, H.; Tan, X. F.; Xie, G. X.; Guo, D. Reduced fracture strength of 2D materials induced by interlayer friction. Small 2021, 17, 2005996.

    CAS  Google Scholar 

  5. Liu, K.; Cheng, J. T.; Zhao, X. J.; Zhu, Y. D.; Ren, X. Y.; Shi, J. L.; Guo, Z. X.; Shan, C. X.; Liu, H. J.; Li, S. F. Negative differential friction coefficients of two-dimensional commensurate contacts dominated by electronic phase transition. Nano Res. 2022, 15, 5758–5766.

    CAS  Google Scholar 

  6. Luo, J. B.; Zhou, X. Superlubricitive engineering-Future industry nearly getting rid of wear and frictional energy consumption. Friction 2020, 8, 643–665.

    Google Scholar 

  7. He, F.; Yang, X.; Bian, Z. L.; Xie, G. X.; Guo, D.; Luo, J. B. Inplane potential gradient induces low frictional energy dissipation during the stick-slip sliding on the surfaces of 2D materials. Small 2019, 15, 1904613.

    CAS  Google Scholar 

  8. Gong, K. L.; Lou, W. J.; Zhao, G. Q.; Wu, X. H.; Wang, X. B. Investigation on tribological behaviors of MoS2 and WS2 quantum dots as lubricant additives in ionic liquids under severe conditions. Friction 2020, 8, 674–683.

    CAS  Google Scholar 

  9. Li, W. B.; Qian, X. F.; Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 2021, 6, 829–846.

    CAS  Google Scholar 

  10. Liu, Y. M.; Wang, K.; Xu, Q.; Zhang, J.; Hu, Y. Z.; Ma, T. B.; Zheng, Q. S.; Luo, J. B. Superlubricity between graphite layers in ultrahigh vacuum. ACS Appl. Mater. Interfaces 2020, 12, 43167–43172.

    CAS  Google Scholar 

  11. Ru, G. L.; Qi, W. H.; Tang, K. W.; Wei, Y. R.; Xue, T. W. Interlayer friction and superlubricity in bilayer graphene and MoS2/MoSe2 van der Waals heterostructures. Tribol. Int. 2020, 151, 106483.

    CAS  Google Scholar 

  12. Wu, S. C.; Meng, Z. S.; Tao, X. M.; Wang, Z. Superlubricity of molybdenum disulfide subjected to large compressive strains. Friction 2022, 10, 209–216.

    CAS  Google Scholar 

  13. Wang, L. F.; Ma, T. B.; Hu, Y. Z.; Zheng, Q. S.; Wang, H.; Luo, J. B. Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: A first-principles study. Nanotechnology 2014, 25, 385701.

    Google Scholar 

  14. Wang, C. Q.; Chen, W. G.; Zhang, Y. S.; Sun, Q.; Jia, Y. Effects of vdW interaction and electric field on friction in MoS2. Tribol. Lett. 2015, 59, 7.

    Google Scholar 

  15. Li, H.; Wang, J. H.; Gao, S.; Chen, Q.; Peng, L. M.; Liu, K. H.; Wei, X. L. Superlubricity between MoS2 monolayers. Adv. Mater. 2017, 29, 1701474.

    Google Scholar 

  16. Li, P. X.; Wang, W. Y.; Zou, C. X.; Gao, X. Y.; Wang, J.; Fan, X. L.; Song, H. F.; Li, J. S. Lattice distortion optimized hybridization and superlubricity of MoS2/MoSe2 heterointerfaces via Moiré patterns. Appl. Surf. Sci. 2023, 613, 155760.

    CAS  Google Scholar 

  17. Büch, H.; Rossi, A.; Forti, S.; Convertino, D.; Tozzini, V.; Coletti, C. Superlubricity of epitaxial monolayer WS2 on graphene. Nano Res. 2018, 11, 5946–5956.

    Google Scholar 

  18. Vazirisereshk, M. R.; Hasz, K.; Zhao, M. Q.; Johnson, A. T. C.; Carpick, R. W.; Martini, A. Nanoscale friction behavior of transition-metal dichalcogenides: Role of the chalcogenide. ACS Nano 2020, 14, 16013–16021.

    CAS  Google Scholar 

  19. Wang, L. F.; Ma, T. B.; Hu, Y. Z.; Wang, H.; Shao, T. M. Ab initio study of the friction mechanism of fluorographene and graphane. J. Phys. Chem. C 2013, 117, 12520–12525.

    CAS  Google Scholar 

  20. Lin, J. J.; Wang, H.; Tay, R. Y.; Li, H. L.; Shakerzadeh, M.; Tsang, S. H.; Liu, Z.; Teo, E. H. T. Versatile and scalable chemical vapor deposition of vertically aligned MoTe2 on reusable Mo foils. Nano Res. 2020, 13, 2371–2377.

    CAS  Google Scholar 

  21. Zhang, F.; Zhang, H. R.; Krylyuk, S.; Milligan, C. A.; Zhu, Y. Q.; Zemlyanov, D. Y.; Bendersky, L. A.; Burton, B. P.; Davydov, A. V.; Appenzeller, J. Electric-field induced structural transition in vertical MoTe2 and Mo1−xWxTe2-based resistive memories. Nat. Mater. 2019, 18, 55–61.

    CAS  Google Scholar 

  22. Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett. 2016, 16, 188–193.

    CAS  Google Scholar 

  23. Tan, Y.; Luo, F.; Zhu, M. J.; Xu, X. L.; Ye, Y.; Li, B.; Wang, G.; Luo, W.; Zheng, X. M.; Wu, N. N. et al. Controllable 2H-to-1T′ phase transition in few-layer MoTe2. Nanoscale 2018, 10, 19964–19971.

    CAS  Google Scholar 

  24. Wu, S.; He, F.; Xie, G. X.; Bian, Z. L.; Ren, Y. L.; Liu, X. Y.; Yang, H. J.; Guo, D.; Zhang, L.; Wen, S. Z. et al. Super-slippery degraded black phosphorus/silicon dioxide interface. ACS Appl. Mater. Interfaces 2020, 12, 7717–7726.

    CAS  Google Scholar 

  25. Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933.

    CAS  Google Scholar 

  26. Tan, X. F.; Guo, D.; Luo, J. B. Dynamic friction energy dissipation and enhanced contrast in high frequency bimodal atomic force microscopy. Friction 2022, 10, 748–761.

    Google Scholar 

  27. Tan, X. F.; Shi, S.; Guo, D.; Luo, J. B. Dynamical characterization of micro cantilevers by different excitation methods in dynamic atomic force microscopy. Rev. Sci. Instrum. 2018, 89, 115109.

    Google Scholar 

  28. An, S. M.; Lee, M.; Kim, B.; Jhe, W. Capillary grip-induced stick-slip motion. Nano Res. 2022, 15, 7384–7391.

    CAS  Google Scholar 

  29. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci 1996, 6, 15–50.

    CAS  Google Scholar 

  30. Zhong, W.; Tománek, D. First-principles theory of atomic-scale friction. Phys. Rev. Lett. 1990, 64, 3054–3057.

    CAS  Google Scholar 

  31. Wang, J. J.; Tiwari, A.; Gao, J.; Huang, Y.; Jia, Y.; Persson, B. N. J. Dependency of sliding friction for two-dimensional systems on electronegativity. Phys. Rev. B 2022, 105, 165431.

    CAS  Google Scholar 

  32. Levita, G.; Molinari, E.; Polcar, T.; Righi, M. C. First-principles comparative study on the interlayer adhesion and shear strength of transition-metal dichalcogenides and graphene. Phys. Rev. B 2015, 92, 085434.

    Google Scholar 

  33. Li, Q.; Su, F. H.; Tang, G. B.; Xu, X.; Chen, Y. J.; Sun, J. F. Atomic-scale friction of black phosphorus from first-principles calculations: Insensitivity of friction under the high-load. Tribol. Int. 2022, 172, 107590.

    CAS  Google Scholar 

  34. Song, Y. M.; Mandelli, D.; Hod, O.; Urbakh, M.; Ma, M.; Zheng, Q. S. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 2018, 17, 894–899.

    CAS  Google Scholar 

  35. Irving, B. J.; Nicolini, P.; Polcar, T. On the lubricity of transition metal dichalcogenides: An ab initio study. Nanoscale 2017, 9, 5597–5607.

    CAS  Google Scholar 

  36. Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

    CAS  Google Scholar 

  37. Sader, J. E.; Chon, J. W. M.; Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 1999, 70, 3967–3969.

    CAS  Google Scholar 

  38. Varenberg, M.; Etsion, I.; Halperin, G. An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 2003, 74, 3362–3367.

    CAS  Google Scholar 

  39. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  40. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  41. Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2010, 22, 022201.

    Google Scholar 

  42. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52175175).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinfeng Tan, Dan Guo or Jianbin Luo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Tan, X., Jiao, J. et al. Interlayer friction behavior of molybdenum ditelluride with different structures. Nano Res. 16, 11375–11382 (2023). https://doi.org/10.1007/s12274-023-5835-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5835-3

Keywords

Navigation