Skip to main content
Log in

A new FTO/TiO2/PbO2 electrode for eco-friendly electrochemical determination of chemical oxygen demand

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Eco-friendly chemical oxygen demand (COD) sensors are highly desired with respect to the importance of COD determination in environmental protection. In this work, a new FTO/TiO2/PbO2 (FTO = fluorine-doped tin oxide) electrode was fabricated with a two-step method and used as an eco-friendly electrochemical COD sensor. The interlayer TiO2 was employed to strengthen the adhesion of PbO2 on the FTO substrates by providing a large TiO2/PbO2 interface area. The effects of the factors including applied potential, supporting electrolyte concentration and stirring speed on the sensing performance were investigated. Under the optimized conditions, linear responses to the COD of water with different COD sources were achieved, and a linear range from 5 to 120 mg/L was obtained in the case of sucrose as the COD source. The relative standard deviations (RSD) were determined to be less than 9% for the glucose solutions with the COD of 7.5, 12.5 and 17.5 mg/L. For real sample analysis, the obtained results were comparable with those measured with the conventional dichromate method, with a relative error less than 11%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geerdink, R. B.; van den Hurk, R. S.; Epema, O. J. Chemical oxygen demand: Historical perspectives and future challenges. Anal. Chim. Acta 2017, 961, 1–11.

    CAS  Google Scholar 

  2. Alves, N. A.; Olean-Oliveira, A.; Cardoso, C. X.; Teixeira, M. F. S. Photochemiresistor sensor development based on a bismuth vanadate type semiconductor for determination of chemical oxygen demand. ACS Appl. Mater. Interfaces 2020, 12, 18723–18729.

    CAS  Google Scholar 

  3. Kondo, T.; Tamura, Y.; Hoshino, M.; Watanabe, T.; Aikawa, T.; Yuasa, M.; Einaga, Y. Direct determination of chemical oxygen demand by anodic decomposition of organic compounds at a diamond electrode. Anal. Chem. 2014, 86, 8066–8072.

    CAS  Google Scholar 

  4. Kim, Y. C.; Sasaki, S.; Yano, K.; Ikebukuro, K.; Hashimoto, K.; Karube, I. A flow method with photocatalytic oxidation of dissolved organic matter using a solid-phase (TiO2) reactor followed by amperometric detection of consumed oxygen. Anal. Chem. 2002, 74, 3858–3864.

    CAS  Google Scholar 

  5. Yu, H. B.; Wang, H.; Quan, X.; Chen, S.; Zhang, Y. B. Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor. Electrochem. Commun. 2007, 9, 2280–2285.

    CAS  Google Scholar 

  6. Zhang, S. Q.; Li, L. H.; Zhao, H. J.; Li, G. Y. A portable miniature UV-LED-based photoelectrochemical system for determination of chemical oxygen demand in wastewater. Sensor. Actuat. B Chem. 2009, 141, 634–640.

    CAS  Google Scholar 

  7. Duan, W. C.; del Campo, F. J.; Gich, M.; Fernández-Sánchez, C. Infield one-step measurement of dissolved chemical oxygen demand with an integrated screen-printed electrochemical sensor. Sensor. Actuat. B Chem. 2022, 369, 132304.

    CAS  Google Scholar 

  8. Liao, J. J.; Chang, F.; Han, X. H.; Ge, C. J.; Lin, S. W. Wireless water quality monitoring and spatial mapping with disposable whole-copper electrochemical sensors and a smartphone. Sensor. Actuat. B Chem. 2020, 306, 127557.

    CAS  Google Scholar 

  9. Zhang, Z. Y.; Chang, X.; Chen, A. C. Determination of chemical oxygen demand based on photoelectrocatalysis of nanoporous TiO2 electrodes. Sensor. Actuat. B Chem. 2016, 223, 664–670.

    CAS  Google Scholar 

  10. Si, H. W.; Pan, N. Q.; Zhang, X. D.; Liao, J. J.; Rumyantseva, M. N.; Gaskov, A. M.; Lin, S. W. A real-time on-line photoelectrochemical sensor toward chemical oxygen demand determination based on field-effect transistor using an extended gate with 3D TiO2 nanotube arrays. Sensor. Actuat. B Chem. 2019, 289, 106–113.

    CAS  Google Scholar 

  11. Yu, H. B.; Ma, C. J.; Quan, X.; Chen, S.; Zhao, H. M. Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode. Environ. Sci. Technol. 2009, 43, 1935–1939.

    CAS  Google Scholar 

  12. Elfeky, E. M. S.; Shehata, M. R.; Elbashar, Y. H.; Barakat, M. H.; El Rouby, W. M. A. Developing the sensing features of copper electrodes as an environmental friendly detection tool for chemical oxygen demand. RSC Adv. 2022, 12, 4199–4208.

    CAS  Google Scholar 

  13. Dai, Z.; Hao, N.; Xiong, M.; Han, X.; Zuo, Y. L.; Wang, K. Portable photoelectrochromic visualization sensor for detection of chemical oxygen demand. Anal. Chem. 2020, 92, 13604–13609.

    CAS  Google Scholar 

  14. Ai, S. Y.; Gao, M. N.; Yang, Y.; Li, J. Q.; Jin, L. T. Electrocatalytic sensor for the determination of chemical oxygen demand using a lead dioxide modified electrode. Electroanalysis 2004, 16, 404–409.

    CAS  Google Scholar 

  15. Ma, C. J.; Tan, F.; Zhao, H. M.; Chen, S.; Quan, X. Sensitive amperometric determination of chemical oxygen demand using Ti/Sb-SnO2/PbO2 composite electrode. Sensor. Actuat. B Chem. 2011, 155, 114–119.

    CAS  Google Scholar 

  16. Wang, X.; Wu, D. D.; Yuan, D.; Wu, X. A nano-lead dioxide-composite electrochemical sensor for the determination of chemical oxygen demand. J. Environ. Chem. Eng. 2022, 10, 107464.

    CAS  Google Scholar 

  17. Carr, J. P.; Hampson, N. A. Lead dioxide electrode. Chem. Rev. 1972, 72, 679–703.

    CAS  Google Scholar 

  18. Velichenko, A. B.; Girenko, D. V.; Kovalyov, S. V.; Gnatenko, A. N.; Amadelli, R.; Danilov, F. I. Lead dioxide electrodeposition and its application: Influence of fluoride and iron ions. J. Electroanal. Chem. 1998, 454, 203–208.

    CAS  Google Scholar 

  19. Ghasemi, S.; Mousavi, M. F.; Shamsipur, M. Electrochemical deposition of lead dioxide in the presence of polyvinylpyrrolidone: A morphological study. Electrochim. Acta 2007, 53, 459–467.

    CAS  Google Scholar 

  20. Fazlinezhad, S.; Jafarzadeh, K.; Shooshtari Gugtapeh, H.; Mirali, S. M. Characterization and electrochemical properties of stable Ni2+ and F co-doped PbO2 coating on titanium substrate. J. Electroanal. Chem. 2022, 909, 116145.

    CAS  Google Scholar 

  21. Xu, Z. S.; Liu, H.; Niu, J. F.; Zhou, Y. J.; Wang, C.; Wang, Y. Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater. J. Hazard. Mater. 2017, 327, 144–152.

    CAS  Google Scholar 

  22. Song, Y. H.; Wei, G.; Xiong, R. C. Structure and properties of PbO2-CeO2 anodes on stainless steel. Electrochim. Acta 2007, 52, 7022–7027.

    CAS  Google Scholar 

  23. Rahmani, A.; Seid-mohammadi, A.; Leili, M.; Shabanloo, A.; Ansari, A.; Alizadeh, S.; Nematollahi, D. Electrocatalytic degradation of diuron herbicide using three-dimensional carbon felt/β-PbO2 anode as a highly porous electrode: Influencing factors and degradation mechanisms. Chemosphere 2021, 276, 130141.

    CAS  Google Scholar 

  24. Poll, C. G.; Payne, D. J. Electrochemical synthesis of PbO2, Pb3O4 and PbO films on a transparent conducting substrate. Electrochim. Acta 2015, 156, 283–288.

    CAS  Google Scholar 

  25. Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990.

    CAS  Google Scholar 

  26. Wang, F. W.; Li, S. D.; Xu, M.; Wang, Y. Y.; Fang, W. Y.; Yan, X. Y. Effect of electrochemical modification method on structures and properties of praseodymium doped lead dioxide anodes. J. Electrochem. Soc. 2013, 160, D53–D59.

    CAS  Google Scholar 

  27. Pottier, A.; Chanéac, C.; Tronc, E.; Mazerolles, L.; Jolivet, J. P. Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J. Mater. Chem. 2001, 11, 1116–1121.

    CAS  Google Scholar 

  28. Li, X. H.; Pletcher, D.; Walsh, F. C. Electrodeposited lead dioxide coatings. Chem. Soc. Rev. 2011, 40, 3879–3894.

    CAS  Google Scholar 

  29. Herron, M. E.; Pletcher, D.; Walsh, F. C. A combined electrochemical and in-situ X-ray diffraction study of the cycling of well-defined lead dioxide layers on platinum. J. Electroanal. Chem. 1992, 332, 183–197.

    CAS  Google Scholar 

  30. Ruetschi, P.; Angstadt, R. T. Anodic oxidation of lead at constant potential. J. Electrochem. Soc. 1964, 111, 1323–1330.

    CAS  Google Scholar 

  31. Binh, P. T.; Van Anh, N. T.; Thuy, M. T. T.; Xuan, M. T.; Duyen, N. T. Electrochemical study on the structure of PbO2 in mixed gel electrolytes during cycling by cyclic voltammetry. Vietnam J. Chem. 2021, 59, 767–774.

    CAS  Google Scholar 

  32. Devilliers, D.; Dinh Thi, M. T.; Mahé, E.; Dauriac, V.; Lequeux, N. Electroanalytical investigations on electrodeposited lead dioxide. J. Electroanal. Chem. 2004, 573, 227–239.

    CAS  Google Scholar 

  33. Hu, G.; Xu, R. D.; He, S. W.; Chen, B. M.; Yang, H. T.; Yu, B. H.; Liu, Q. Electrosynthesis of Al/Pb/α-PbO2 composite inert anode materials. Trans. Nonferrous Met. Soc. China 2015, 25, 2095–2102.

    CAS  Google Scholar 

  34. Liu, Z.; Luo, X. F.; Ji, D. D. Effect of phase composition of PbO2 on cycle stability of soluble lead flow batteries. J. Energy Storage 2021, 38, 102524.

    Google Scholar 

  35. Inguanta, R.; Vergottini, F.; Ferrara, G.; Piazza, S.; Sunseri, C. Effect of temperature on the growth of a-PbO2 nanostructures. Electrochim. Acta 2010, 55, 8556–8562.

    CAS  Google Scholar 

  36. Mo, H. L.; Tang, Y.; Wang, N.; Zhang, M.; Cheng, H. N.; Chen, Y. M.; Wan, P. Y.; Sun, Y. Z.; Liu, S. Y.; Wang, L. Performance improvement in chemical oxygen demand determination using carbon fiber felt/CeO2-β-PbO2 electrode deposited by cyclic voltammetry method. J. Solid. State Electr. 2016, 20, 2179–2189.

    CAS  Google Scholar 

  37. Mo, H. L.; Tang, Y.; Wang, X. Z.; Liu, J.; Kong, D. D.; Chen, Y. M.; Wan, P. Y.; Cheng, H. N.; Sun, T. Q.; Zhang, L. Y. et al. Development of a three-dimensional structured carbon fiber felt/β-PbO2 electrode and its application in chemical oxygen demand determination. Electrochim. Acta 2015, 176, 1100–1107.

    CAS  Google Scholar 

  38. Dai, Q. Z.; Xia, Y. J.; Sun, C.; Weng, M. L.; Chen, J.; Wang, J. D.; Chen, J. M. Electrochemical degradation of levodopa with modified PbO2 electrode: Parameter optimization and degradation mechanism. Chem. Eng. J. 2014, 245, 359–366.

    CAS  Google Scholar 

  39. Duan, P. Z.; Hu, X.; Ji, Z. Y.; Yang, X. M.; Sun, Z. R. Enhanced oxidation potential of Ti/SnO2-Cu electrode for electrochemical degradation of low-concentration ceftazidime in aqueous solution: Performance and degradation pathway. Chemosphere 2018, 212, 594–603.

    CAS  Google Scholar 

  40. Silva, C. R.; Conceicao, C. D. C.; Bonifácio, V. G.; Fatibello Filho, O.; Teixeira, M. F. S. Determination of the chemical oxygen demand (COD) using a copper electrode: A clean alternative method. J. Solid State Electrochem. 2009, 13, 665–669.

    CAS  Google Scholar 

  41. Yang, J. Q.; Chen, J. W.; Zhou, Y. K.; Wu, K. B. A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand. Sensor. Actuat. B Chem. 2011, 153, 78–82.

    CAS  Google Scholar 

  42. Li, J. Q.; Zheng, L.; Li, L. P.; Shi, G. Y.; Xian, Y. Z.; Jin, L. T. Ti/TiO2 electrode preparation using laser anneal and its application to determination of chemical oxygen demand. Electroanalysis 2006, 18, 1014–1018.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2020YFB2009000) and the National Natural Science Foundation of China (No. 22074137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunhui Li, Junfeng Zhai or Shaojun Dong.

Electronic Supplementary Material

A new FTO/TiO2/PbO2 electrode for eco-friendly electrochemical determination of chemical oxygen demand

Supplementary material, approximately 3.29 MB.

Supplementary material, approximately 2.66 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, Y., Sun, X. et al. A new FTO/TiO2/PbO2 electrode for eco-friendly electrochemical determination of chemical oxygen demand. Nano Res. 16, 11042–11047 (2023). https://doi.org/10.1007/s12274-023-5830-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5830-8

Keywords

Navigation