Skip to main content
Log in

Active plane modulation of Bi2O3 nanosheets via Zn substitution for efficient electrocatalytic CO2 reduction to formic acid

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Formic acid is considered one of the most economically viable products for electrocatalytic CO2 reduction reaction (CO2RR). However, developing highly active and selective electrocatalysts for effective CO2 conversion remains a grand challenge. Herein, we report that structural modulation of the bismuth oxide nanosheet via Zn2+ cooperation has a profound positive effect on exposure of the active plane, thereby contributing to high electrocatalytic CO2RR performance. The obtained Zn-Bi2O3 catalyst demonstrates superior selectivity towards formate generation in a wide potential range; a high Faradaic efficiency of 95% and a desirable partial current density of around 20 mA·cm−2 are obtained at −0.9 V (vs. reversible hydrogen electrode (RHE)). As proposed by density functional theory calculations, Zn substitution is the most energetically feasible for forming and stabilizing the key OCHO* intermediate among the used metal ions. Moreover, the more negative adsorption energy of OCHO* and the relatively low energy barrier for the desorption of HCOOH* are responsible for the enhanced activity and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ager, J. W.; Lapkin, A. A. Chemical storage of renewable energy. Science 2018, 360, 707–708.

    Article  CAS  Google Scholar 

  2. Cheng, H. F.; Liu, Y. M.; Wu, J. W.; Zhang, Z.; Li, X. G.; Wang, X.; Fan, H. J. Concurrent H2 generation and formate production assisted by CO2 absorption in one electrolyzer. Small Methods 2021, 5, 2100871.

    Article  CAS  Google Scholar 

  3. Gong, Q. F.; Ding, P.; Xu, M. Q.; Zhu, X. R.; Wang, M. Y.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 10, 2807.

    Article  Google Scholar 

  4. Shen, C. Q.; Wang, P. T.; Li, L. G.; Huang, X. Q.; Shao, Q. Phase and structure modulating of bimetallic Cu/In nanoparticles realizes efficient electrosynthesis of syngas with wide CO/H2 ratios. Nano Res. 2022, 15, 528–534.

    Article  CAS  Google Scholar 

  5. Liu, M.; Liu, M. X.; Wang, X. M.; Kozlov, S. M.; Cao, Z.; De Luna, P.; Li, H. M.; Qiu, X. Q.; Liu, K.; Hu, J. H. et al. Quantum-dot-derived catalysts for CO2 reduction reaction. Joule 2019, 3, 1703–1718.

    Article  CAS  Google Scholar 

  6. Wang, H. X.; Tzeng, Y. K.; Ji, Y. F.; Li, Y. B.; Li, J.; Zheng, X. L.; Yang, A. K.; Liu, Y. Y.; Gong, Y. J.; Cai, L. L. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 2020, 15, 131–137.

    Article  CAS  Google Scholar 

  7. Wei, Z. N.; Yue, S.; Gao, S. Y.; Cao, M. N.; Cao, R. Synergetic effects of gold-doped copper nanowires with low Au content for enhanced electrocatalytic CO2 reduction to multicarbon products. Nano Res. 2023, 16, 7777–7783.

    Article  CAS  Google Scholar 

  8. Fan, L.; Xia, C.; Zhu, P.; Lu, Y. Y.; Wang, H. T. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 2020, 11, 3633.

    Article  CAS  Google Scholar 

  9. Wang, L.; Nitopi, S.; Wong, A. B.; Snider, J. L.; Nielander, A. C.; Morales-Guio, C. G.; Orazov, M.; Higgins, D. C.; Hahn, C.; Jaramillo, T. F. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat. Catal. 2019, 2, 702–708.

    Article  CAS  Google Scholar 

  10. Deng, P. L.; Yang, F.; Wang, Z. T.; Chen, S. H.; Zhou, Y. Z.; Zaman, S.; Xia, B. Y. Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2020, 59, 10807–10813.

    Article  CAS  Google Scholar 

  11. Eppinger, J.; Huang, K. W. Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2017, 2, 188–195.

    Article  CAS  Google Scholar 

  12. Wang, F.; Li, Y.; Xia, X. H.; Cai, W.; Chen, Q. G.; Chen, M. H. Metal-CO2 electrochemistry: From CO2 recycling to energy storage. Adv. Energy Mater. 2021, 11, 2100667.

    Article  CAS  Google Scholar 

  13. Saha, P.; Amanullah, S.; Dey, A. Selectivity in electrochemical CO2 reduction. Acc. Chem. Res. 2022, 55, 134–144.

    Article  CAS  Google Scholar 

  14. Li, H. X.; Yue, X.; Qiu, Y. S.; Xiao, Z.; Yu, X. B.; Xue, C.; Xiang, J. H. Selective electroreduction of CO2 to formate over the coelectrodeposited Cu/Sn bimetallic catalyst. Mater. Today Energy 2021, 21, 100797.

    Article  CAS  Google Scholar 

  15. Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed. 2016, 55, 6680–6684.

    Article  CAS  Google Scholar 

  16. Gao, N.; Wang, F. M.; Ding, J. W.; Sendeku, M. G.; Yu, P.; Zhan, X. Y.; Cai, S. F.; Xiao, C. H.; Yang, R.; He, J. et al. Intercalated gold nanoparticle in 2D palladium nanosheet avoiding CO poisoning for formate production under a wide potential window. ACS Appl. Mater. Interfaces 2022, 14, 10344–10352.

    Article  CAS  Google Scholar 

  17. Xie, J. F.; Wang, X. Y.; Lv, J. Q.; Huang, Y. Y.; Wu, M. X.; Wang, Y. B.; Yao, J. N. Reversible aqueous zinc-CO2 batteries based on CO2–HCOOH interconversion. Angew. Chem., Int. Ed. 2018, 57, 16996–17001.

    Article  CAS  Google Scholar 

  18. Chen, Z.; Fan, T. T.; Zhang, Y. Q.; Xiao, J.; Gao, M. R.; Duan, N. Q.; Zhang, J. W.; Li, J. H.; Liu, Q. X.; Yi, X. D. et al. Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH. Appl. Catal. B: Environ. 2020, 261, 118243.

    Article  CAS  Google Scholar 

  19. Liu, S. B.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. Efficient electrochemical reduction of CO2 to HCOOH over sub-2 nm SnO2 quantum wires with exposed grain boundaries. Angew. Chem., Int. Ed. 2019, 58, 8499–8503.

    Article  CAS  Google Scholar 

  20. Yang, Z. N.; Oropeza, F. E.; Zhang, K. H. L. P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate. APL Mater. 2020, 8, 060901.

    Article  CAS  Google Scholar 

  21. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

    Article  CAS  Google Scholar 

  22. Li, N. H.; Yan, P.; Tang, Y. H.; Wang, J. H.; Yu, X. Y.; Wu, H. B. In-situ formation of ligand-stabilized bismuth nanosheets for efficient CO2 conversion. Appl. Catal. B: Environ. 2021, 297, 120481.

    Article  CAS  Google Scholar 

  23. Yang, H.; Han, N.; Deng, J.; Wu, J. H.; Wang, Y.; Hu, Y. P.; Ding, P.; Li, Y. F.; Li, Y. G.; Lu, J. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 2018, 8, 1801536.

    Article  Google Scholar 

  24. Koh, J. H.; Won, D. H.; Eom, T.; Kim, N. K.; Jung, K. D.; Kim, H.; Hwang, Y. J.; Min, B. K. Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst. ACS Catal. 2017, 7, 5071–5077.

    Article  CAS  Google Scholar 

  25. Deng, P. L.; Wang, H. M.; Qi, R. J.; Zhu, J. X.; Chen, S. H.; Yang, F.; Zhou, L.; Qi, K.; Liu, H. F.; Xia, B. Y. Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 2020, 10, 743–750.

    Article  CAS  Google Scholar 

  26. Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Engineering bismuth–tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew. Chem., Int. Ed. 2021, 60, 12554–12559.

    Article  CAS  Google Scholar 

  27. Zhang, Z.; Wen, G. B.; Luo, D.; Ren, B. H.; Zhu, Y. F.; Gao, R.; Dou, H. Z.; Sun, G. R.; Feng, M.; Bai, Z. Y. et al. “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 6855–6864.

    Article  CAS  Google Scholar 

  28. Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J. H.; Li, Y. F.; Li, Y. G. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 2018, 9, 1320.

    Article  Google Scholar 

  29. Ren, J. J.; Zheng, L. C.; Su, Y. M.; Meng, P. P.; Zhou, Q. Y.; Zeng, H.; Zhang, T.; Yu, H. J. Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations. Chem. Eng. J. 2022, 445, 136778.

    Article  CAS  Google Scholar 

  30. Liu, S.; Cao, Y.; Liu, H.; Wang, H. L.; Zhang, B. S.; Zhang, Y. M.; Zhang, L. H.; Zhang, S.; Sun, J. Efficient electrochemical reduction of CO2 promoted by the electrospun Cu1.96S/Cu tandem catalyst. Nanoscale 2021, 13, 16986–16994.

    Article  CAS  Google Scholar 

  31. Li, M. L.; Li, W. B.; Song, W. T.; Wang, C.; Yao, Y. F.; Wu, C. P.; Luo, W. J.; Zou, Z. G. Do Cu substrates participate in Bi electrocatalytic CO2 reduction? ChemNanoMat 2021, 7, 128–133.

    Article  CAS  Google Scholar 

  32. Yan, S.; Peng, C.; Yang, C.; Chen, Y. S.; Zhang, J. B.; Guan, A. X.; Lv, X. M.; Wang, H. Z.; Wang, Z. Q.; Sham, T. K. et al. Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem., Int. Ed. 2021, 60, 25741–25745.

    Article  CAS  Google Scholar 

  33. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

    Article  CAS  Google Scholar 

  34. Li, L.; Cai, F. F.; Qi, F. X. Y.; Ma, D. K. Cu nanowire bridged Bi nanosheet arrays for efficient electrochemical CO2 reduction toward formate. J. Alloys Compd. 2020, 841, 155789.

    Article  CAS  Google Scholar 

  35. Liu, G. B.; Li, Z. H.; Shi, J. J.; Sun, K.; Ji, Y. J.; Wang, Z. G.; Qiu, Y. F.; Liu, Y. Y.; Wang, Z. J.; Hu, P. A. Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential. Appl. Catal. B: Environ. 2020, 260, 118134.

    Article  CAS  Google Scholar 

  36. Yang, G.; Liang, Y. J.; Wang, K.; Yang, J.; Zeng, Z. K.; Xu, R.; Xie, X. J. Simultaneous introduction of 0D Bi nanodots and oxygen vacancies onto 1D Bi6Mo2O15 sub-microwires for synergistically enhanced photocatalysis. Chem. Eng. J. 2021, 409, 128098.

    Article  CAS  Google Scholar 

  37. Chen, Z. P.; Mou, K. W.; Wang, X. H.; Liu, L. C. Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew. Chem., Int. Ed. 2018, 57, 12790–12794.

    Article  CAS  Google Scholar 

  38. Lee, C. W.; Hong, J. S.; Yang, K. D.; Jin, K.; Lee, J. H.; Ahn, H. Y.; Seo, H.; Sung, N. E.; Nam, K. T. Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte. ACS Catal. 2018, 8, 931–937.

    Article  CAS  Google Scholar 

  39. Ma, M.; Kim, S.; Chorkendorff, I.; Seger, B. Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci. 2020, 11, 8854–8861.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Singapore Ministry of Education Academic Research Fund Tier 1 (Nos. RG 85/20 and 125/21), the National Natural Science Foundation of China (No. U20A200201), China Postdoctoral Science Fund, No.3 Special Funding (Pre-Station) (No. 2021TQ007), and natural science program on basic research project of Shaanxi province (No. 2023-JC-QN-0155). The supercomputing facilities provided by Hefei Advanced Computing Center are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Guo or Hong Jin Fan.

Electronic Supplementary Material

12274_2023_5824_MOESM1_ESM.pdf

Active plane modulation of Bi2O3 nanosheets via Zn substitution for efficient electrocatalytic CO2 reduction to formic acid

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wu, T., Cheng, H. et al. Active plane modulation of Bi2O3 nanosheets via Zn substitution for efficient electrocatalytic CO2 reduction to formic acid. Nano Res. 16, 10803–10809 (2023). https://doi.org/10.1007/s12274-023-5824-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5824-6

Keywords

Navigation