Skip to main content
Log in

One-step synthesis of three-dimensional mesoporous Co3O4@Al2O3 nanocomposites with deep eutectic solvent: An efficient and stable peroxymonosulfate activator for organic pollutant degradations

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The effective, stable, and secure catalysts are essential for sulfate radical (SO4·−)-based advanced oxidation processes (SR-AOPs) to the degradation of organic contaminants in water. Heterogeneous supported cobalt-based catalysts are commonly used to activate peroxymonosulfate (PMS) to achieve the degradation. In this work, we synthesized Co3O4@Al2O3 three-dimensional (3D) mesoporous nanocomposite (denoted as Co3O4@Al2O3 3DPNC) in just one step by calcining cheap and green deep eutectic solvent (DES) solution containing Co salt. Co3O4@Al2O3 3DPNC with the high specific surface area (93.246 m2/g), uniform pore distribution (3.829 nm) and rich porosity (0.255 cm3/g) were attained in a beautiful hierarchical structure which exhibited the open 3D propeller-like microstructure, two-dimensional lamellar substructure with rich folds, as well as the decoration of highly dispersed Co3O4 nanoparticles on mesoporous amorphous Al2O3. The excellent chemical and thermal stability of Al2O3 ensures the high stability of the catalyst, and the formation of the complex hierarchical structure makes the active Co3O4 be homogenously dispersed for effective catalysis. The catalyst demonstrated outstanding performance for catalytic degradations of organic pollutants (acetaminophen, oxytetracycline, 5-sulfosalicylic acid, orange G and Rhodamine B) by generated SO4·−, ·OH and 1O2. With a very low cobalt content (equal to 28.2 mg/L of Co), the catalyst exhibited very high stability and excellent reusability in the recycling usages, while the leaching of the cobalt element (< 0.145 mg/L) was also at a low level. Our catalyst achieved effective degradations of acetaminophen in cycles without losing its stable hierarchical nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oh, W. D.; Dong, Z. L.; Lim, T. T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B: Environ. 2016, 194, 169–201.

    CAS  Google Scholar 

  2. Qi, J. J.; Liu, J. Z.; Sun, F. B.; Huang, T. B.; Duan, J.; Liu, W. High active amorphous Co(OH)2 nanocages as peroxymonosulfate activator for boosting acetaminophen degradation and DFT calculation. Chin. Chem. Lett. 2021, 32, 1814–1818.

    CAS  Google Scholar 

  3. Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27.

    CAS  Google Scholar 

  4. Gimeno, O.; Carbajo, M.; Beltran, F. J.; Rivas, F. J. Phenol and substituted phenols AOPs remediation. J. Hazard. Mater. 2005, 119, 99–108.

    CAS  Google Scholar 

  5. Peng, Y. T.; Tang, H. M.; Yao, B.; Gao, X.; Yang, X.; Zhou, Y. Y. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A review. Chem. Eng. J. 2021, 414, 128800.

    CAS  Google Scholar 

  6. Hu, P. D.; Long, M. C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B: Environ. 2016, 181, 103–117.

    CAS  Google Scholar 

  7. Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62.

    CAS  Google Scholar 

  8. Chen, X. Y.; Chen, J. W.; Qiao, X. L.; Wang, D. G.; Cai, X. Y. Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal. B: Environ. 2008, 80, 116–121.

    CAS  Google Scholar 

  9. Oyekunle, D. T.; Zhou, X. Q.; Shahzad, A.; Chen, Z. Q. Review on carbonaceous materials as persulfate activators: Structure-performance relationship, mechanism and future perspectives on water treatment. J. Mater. Chem. A 2021, 9, 8012–8050.

    CAS  Google Scholar 

  10. Gao, Q.; Wang, G. S.; Chen, Y. R.; Han, B.; Xia, K. S.; Zhou, C. G. Utilizing cobalt-doped materials as heterogeneous catalysts to activate peroxymonosulfate for organic pollutant degradation: A critical review. Environ. Sci.: Water Res. Technol. 2021, 7, 1197–1211.

    CAS  Google Scholar 

  11. Jiang, D. N.; Fang, D.; Zhou, Y.; Wang, Z. W.; Yang, Z. H.; Zhu, J.; Liu, Z. M. Strategies for improving the catalytic activity of metal-organic frameworks and derivatives in SR-AOPs: Facing emerging environmental pollutants. Environ. Pollut. 2022, 306, 119386.

    CAS  Google Scholar 

  12. Qi, F.; Chu, W.; Xu, B. B. Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate. Appl. Catal. B: Evvionn. 2013, 144-135, 324–332.

    Google Scholar 

  13. Hou, J. F.; He, X. D.; Zhang, S. Q.; Yu, J. L.; Feng, M. B.; Li, X. D. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review. Sci. Total Environ. 2021, 770, 145311.

    CAS  Google Scholar 

  14. Li, B.; Wang, Y. F.; Zhang, L.; Xu, H. Y. Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: A review. Chemosphere 2022, 291, 132954.

    CAS  Google Scholar 

  15. Shukla, P.; Wang, S. B.; Singh, K.; Ang, H. M.; Tad’, M. O. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal. B: Environ. 2010, 99, 163–169.

    CAS  Google Scholar 

  16. Matsuyama, K. Supercritical fluid processing for metal-organic frameworks, porous coordination polymers, and covalent organic frameworks. J. Supercrit. Fluids 2018, 134, 197–203.

    CAS  Google Scholar 

  17. Cai, T.; Deng, W.; Xu, P.; Yuan, J.; Liu, Z.; Zhao, K. F.; Tong, Q.; He, D. N. Great activity enhancement of Co3O4/γ-Al2O3 catalyst for propane combustion by structural modulation. Chem. Eng. J. 2020, 393, 125071.

    Google Scholar 

  18. Yang, Q. J.; Choi, H.; Chen, Y. J.; Dionysiou, D. D. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water: The effect of support, cobalt precursor, and UV radiation. Appl. Catal. B: Environ. 2008, 77, 300–307.

    CAS  Google Scholar 

  19. Sun, H. Q.; Liang, H. W.; Zhou, G. L.; Wang, S. B. Supported cobalt catalysts by one-pot aqueous combustion synthesis for catalytic phenol degradation. J. Colloid Interface Sci. 2011, 394, 394–400.

    Google Scholar 

  20. Nyathi, T. M.; Fadlalla, M. I.; Fischer, N.; York, A. P. E.; Olivier, E. J.; Gibson, E. K.; Wells, P. P.; Claeys, M. Support and gas environment effects on the preferential oxidation of carbon monoxide over Co3O4 catalysts studied in situ. Appl. Catal. B: Environ. 2021, 297, 120450.

    CAS  Google Scholar 

  21. Lyu, L.; Zhang, L. L.; Hu, C.; Yang, M. Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper-aluminum-silica nanospheres for water purification. J. Mater. Chem. A 2016, 4, 8610–8619.

    CAS  Google Scholar 

  22. Faheem; Du, J. K.; Kim, S. H.; Hassan, M. A.; Irshad, S.; Bao, J. G. Application of biochar in advanced oxidation processes: Supportive, adsorptive, and catalytic role. Environ. Sci. Pollut. Res. 2020, 27, 37286–37312.

    CAS  Google Scholar 

  23. Francisco, M.; van den Bruinhorst, A.; Kroon, M. C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents. Angew. Chem., Int. Ed. 2011, 32, 3074–3085.

    Google Scholar 

  24. Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082.

    CAS  Google Scholar 

  25. Rong, K.; Wei, J. L.; Huang, L.; Fang, Y. X.; Dong, S. J. Synthesis of low dimensional hierarchical transition metal oxides via a direct deep eutectic solvent calcining method for enhanced oxygen evolution catalysis. Nanoscale 2020, 12, 20719–20725.

    CAS  Google Scholar 

  26. Wei, J. L.; Rong, K.; Li, X. L.; Wang, Y. C.; Qiao, Z. A.; Fang, Y. X.; Dong, S. J. Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides. Nano Res. 2022, 13, 2756–2763.

    Google Scholar 

  27. Lai, L. D.; Yan, J. F.; Li, J.; Lai, B. Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: Performance, biotoxicity, degradation pathways and mechanism. Chem. Eng. J. 2018, 343, 676–688.

    CAS  Google Scholar 

  28. Ji, L.; Lin, J.; Zeng, H. C. Metal-support interactions in Co/Al2O3 catalysts: A comparative study on reactivity of support. J. Phys. Chem. B 2000, 104, 1783–1790.

    CAS  Google Scholar 

  29. Busca, G.; Guidetti, R.; Lorenzelli, V. Fourier-transform infrared study of the surface properties of cobalt oxides. J. Chem. Soc., Faraday Trans. 1990, 86, 989–994.

    CAS  Google Scholar 

  30. Zayat, M.; Levy, D. Blue CoAl2O4 particles prepared by the sol-gel and citrate-gel methods. Chem. Mater. 2000, 12, 2763–2769.

    CAS  Google Scholar 

  31. Wang, C. Y.; Liu, S. M.; Liu, L. H.; Bai, X. Synthesis of cobalt-aluminate spinels via glycine chelated precursors. Mater. Chem. Phys. 2006, 96, 361–370.

    CAS  Google Scholar 

  32. Deng, J.; Feng, S. F.; Zhang, K. J.; Li, J.; Wang, H. Y.; Zhang, T. Q.; Ma, X. Y. Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH. Chem. Eng. J. 2017, 308, 505–515.

    CAS  Google Scholar 

  33. Ma, Y. Y.; Wang, H. J.; Lv, X. F.; Xiong, D. B.; Xie, H. J.; Zhang, Z. H. Three-dimensional ordered mesoporous Co3O4/peroxymono-sulfate triggered nanoconfined heterogeneous catalysis for rapid removal of ranitidine in aqueous solution. Chem. Eng. J. 2022, 443, 136495.

    CAS  Google Scholar 

  34. Hilmen, A. M.; Schanke, D.; Hanssen, K. F.; Holmen, A. Study of the effect of water on alumina supported cobalt Fischer-Tropsch catalysts. Appl. Catal. A: Gen. 1999, 186, 169–188.

    CAS  Google Scholar 

  35. Wang, Y. S.; Wang, C. S.; Chen, M. Q.; Hu, J. X.; Tang, Z. Y.; Liang, D. F.; Cheng, W.; Yang, Z. L.; Wang, J.; Zhang, H. Influence of CoAl2O4 spinel and Co-phyllosilicate structures derived from Co/sepiolite catalysts on steam reforming of bio-oil for hydrogen production. Fuel 2020, 279, 118449.

    CAS  Google Scholar 

  36. Tan, X. H.; Guo, L. M.; Liu, S. N.; Wu, J. X.; Zhao, T. Q.; Ren, J. C.; Liu, Y. L.; Kang, X. H.; Wang, H. F.; Sun, L. F. et al. A general one-pot synthesis strategy of 3D porous hierarchical networks crosslinked by monolayered nanoparticles interconnected nanoplates for lithium ion batteries. Adv. Funct. Mater. 2019, 29, 1903003.

    Google Scholar 

  37. Liao, G. Z.; Qing, X.; Xu, P.; Li, L. S.; Lu, P.; Chen, W. R.; Xia, D. H. Synthesis of single atom cobalt dispersed on 2D carbon nanoplate and degradation of acetaminophen by peroxymonosulfate activation. Chem. Eng. J. 2022, 427, 132027.

    CAS  Google Scholar 

  38. Nguyen, T. B.; Huang, C. P.; Doong, R. A.; Wang, M. H.; Chen, C. W.; Dong, C. D. Manipulating the morphology of 3D flower-like CoMn2O4 bimetallic catalyst for enhancing the activation of peroxymonosulfate toward the degradation of selected persistent pharmaceuticals in water. Chem. Eng. J. 2022, 436, 135244.

    CAS  Google Scholar 

  39. Yang, M. T.; Du, Y. C.; Tong, W. C.; Yip, A. C. K.; Lin, K. Y. A. Cobalt-impregnated biochar produced from CO2-mediated pyrolysis of Co/lignin as an enhanced catalyst for activating peroxymonosulfate to degrade acetaminophen. Chemosphere 2019, 226, 924–933.

    CAS  Google Scholar 

  40. Kang, S. M.; Hwang, J. CoMn2O4 embedded hollow activated carbon nanofibers as a novel peroxymonosulfate activator. Chem. Eng. J. 2021, 406, 127158.

    CAS  Google Scholar 

  41. Yun, W. C.; Lin, K. Y. A.; Tong, W. C.; Lin, Y. F.; Du, Y. C. Enhanced degradation of paracetamol in water using sulfate radical-based advanced oxidation processes catalyzed by 3-dimensional Co3O4 nanoflower. Chem. Eng. J. 2019, 373, 1329–1337.

    CAS  Google Scholar 

  42. Tuan, D. D.; Hu, C.; Kwon, E.; Du, Y. C.; Lin, K. Y. A. Coordination polymer-derived porous Co3O4 nanosheet as an effective catalyst for activating peroxymonosulfate to degrade sulfosalicylic acid. Appl. Surf. Sci. 2020, 532, 147382.

    CAS  Google Scholar 

  43. Yan, J. C.; Lei, M.; Zhu, L. H.; Anjum, M. N.; Zou, J.; Tang, H. Q. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. J. Hazard. Mater. 2011, 186, 1398–1404.

    CAS  Google Scholar 

  44. Chen, L. W.; Ding, D. H.; Liu, C.; Cai, H.; Qu, Y.; Yang, S. J.; Gao, Y.; Cai, T. M. Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration. Chem. Eng. J. 2018, 334, 273–284.

    CAS  Google Scholar 

  45. Ji, Y. F.; Dong, C. X.; Kong, D. Y.; Lu, J. H. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: Kinetics, reaction products and transformation mechanisms. J. Hazard. Mater. 2015, 285, 491–500.

    CAS  Google Scholar 

  46. Huang, Y. H.; Huang, Y. F.; Huang, C. I.; Chen, C. Y. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst. J. Hazard. Mater. 2009, 170, 1110–1118.

    CAS  Google Scholar 

  47. Peng, L. J.; Shang, Y. N.; Gao, B. Y.; Xu, X. Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: Role of pyridinic N-Co binding and high tolerance of chloride. Appl. Catal. B: Environ. 2021, 282, 119484.

    CAS  Google Scholar 

  48. Feng, Y.; Wu, D. L.; Deng, Y.; Zhang, T.; Shih, K. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: Synergistic effects and mechanisms. Environ. Sci. Technol. 2016, 50, 3119–3127.

    CAS  Google Scholar 

  49. Yang, W. C.; Li, X. Y.; Jiang, Z.; Li, C. F.; Zhao, J.; Wang, H. Y.; Liao, Q. Structure-dependent catalysis of Co3O4 crystals in persulfate activation via nonradical pathway. Appl. Surf. Sci. 2020, 525, 146482.

    CAS  Google Scholar 

  50. Wang, Z. H.; Yuan, R. X.; Guo, Y. G.; Xu, L.; Liu, J. S. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: Kinetic analysis. J. Hazard. Mater. 2011, 190, 1083–1087.

    CAS  Google Scholar 

  51. Li, W.; Li, Y. X.; Zhang, D. Y.; Lan, Y. Q.; Guo, J. CuO-Co3O4@CeO2 as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate. J. Hazard. Mater. 2020, 381, 121209.

    CAS  Google Scholar 

  52. Koo, H. M.; Ahn, C. I.; Lee, D. H.; Roh, H. S.; Shin, C. H.; Kye, H.; Bae, J. W. Roles of Al2O3 promoter for an enhanced structural stability of ordered-mesoporous Co3O4 catalyst during CO hydrogenation to hydrocarbons. Fuel 2018, 225, 460–471.

    CAS  Google Scholar 

  53. Wang, Q. F.; Shao, Y. S.; Gao, N. Y.; Chu, W. H.; Chen, J. X.; Lu, X.; Zhu, Y. P.; An, N. Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: Kinetics and mechanism. Sep. Purif. Technol. 2017, 189, 176–185.

    CAS  Google Scholar 

  54. Ahn, C. I.; Koo, H. M.; Jo, J. M.; Roh, H. S.; Lee, J. B.; Lee, Y. J.; Jang, E. J.; Bae, J. W. Stabilized ordered-mesoporous Co3O4 structures using Al pillar for the superior CO hydrogenation activity to hydrocarbons. Appl. Catal. B: Environ. 2016, 180, 139–149.

    CAS  Google Scholar 

  55. Verstraeten, S. V.; Lucangioli, S.; Galleano, M. ESR characterization of thallium(III)-mediated nitrones oxidation. Inorg. Chim. Acta 2009, 362, 2305–2310.

    CAS  Google Scholar 

  56. Xia, D. H.; Yin, R.; Sun, J. L.; An, T. C.; Li, G. Y.; Wang, W. J.; Zhao, H. J.; Wong, P. K. Natural magnetic pyrrhotite as a high-efficient persulfate activator for micropollutants degradation: Radicals identification and toxicity evaluation. J. Hazard. Mater. 2017, 340, 435–444.

    CAS  Google Scholar 

  57. Lee, H.; Lee, H. J.; Jeong, J.; Lee, J.; Park, N. B.; Lee, C. Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism. Chem. Eng. J. 2015, 266, 28–33.

    CAS  Google Scholar 

  58. Zhang, H.; An, Q.; Su, Y.; Quan, X.; Chen, S. Co3O4 with upshifted d-band center and enlarged specific surface area by single-atom Zr doping for enhanced PMS activation. J. Hazard. Mater. 2023, 448, 130987.

    CAS  Google Scholar 

  59. Yang, X. D.; Duan, J.; Qi, J. J.; Li, X. Z.; Gao, J.; Liang, Y. F.; Li, S.; Duan, T.; Liu, W. Modulating the electron structure of Co-3d in Co3O4-x/WO2.72 for boosting peroxymonosulfate activation and degradation of sulfamerazine: Roles of high-valence W and rich oxygen vacancies. J. Hazard. Mater. 2023, 445, 130576.

    CAS  Google Scholar 

  60. Han, X. L.; Zhang, W.; Li, S.; Cheng, C. Y.; Yu, Q. L.; Jia, Q. L.; Zhou, L.; Xiu, G. Mn-MOF derived manganese sulfide as peroxymonosulfate activator for levofloxacin degradation: An electron-transfer dominated and radical/nonradical coupling process. J. Environ. Sci. 2023, 130, 197–211.

    Google Scholar 

  61. Shi, P. H.; Dai, X. F.; Zheng, H.; Li, D. X.; Yao, W. F.; Hu, C. Y. Synergistic catalysis of Co3O4 and graphene oxide on Co3O4/GO catalysts for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals. Chem. Eng. J. 2014, 240, 264–270.

    CAS  Google Scholar 

  62. Zhang, W.; Tay, H. L.; Lim, S. S.; Wang, Y. S.; Zhong, Z. Y.; Xu, R. Supported cobalt oxide on MgO: Highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl. Catal. B: Environ. 2010, 95, 93–99.

    CAS  Google Scholar 

  63. Bicalho, H. A.; Rios, R. D. F.; Binatti, I.; Ardisson, J. D.; Howarth, A. J.; Lago, R. M.; Teixeira, A. P. C. Efficient activation of peroxymonosulfate by composites containing iron mining waste and graphitic carbon nitride for the degradation of acetaminophen. J. Hazard. Mater. 2020, 400, 123310.

    CAS  Google Scholar 

  64. Rodriguez-Narvaez, O. M.; Rajapaksha, R. D.; Ranasinghe, M. I.; Bai, X. L.; Peralta-Hernández, J. M.; Bandala, E. R. Peroxymonosulfate decomposition by homogeneous and heterogeneous Co: Kinetics and application for the degradation of acetaminophen. J. Environ. Sci. 2020, 93, 30–40.

    CAS  Google Scholar 

  65. Li, Z. L.; Wang, M.; Jin, C. Y.; Kang, J.; Liu, J.; Yang, H. R.; Zhang, Y. Q.; Pu, Q. Y.; Zhao, Y.; You, M. Y. et al. Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation. Chem. Eng. J. 2020, 392, 123789.

    CAS  Google Scholar 

  66. Zhao, X. F.; Niu, C. G.; Zhang, L.; Guo, H.; Wen, X. J.; Liang, C.; Zeng, G. M. Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate. Chemosphere 2018, 204, 11–21.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22274149, 22074137, 22274147 and 21721003) and Jilin Province Science and Technology Development Plan Project (No. 20210506012ZP)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dengbin Yu, Youxing Fang or Shaojun Dong.

Electronic Supplementary Material

12274_2023_5819_MOESM1_ESM.pdf

One-step synthesis of three-dimensional mesoporous Co3O4@Al2O3 nanocomposites with deep eutectic solvent: An efficient and stable peroxymonosulfate activator for organic pollutant degradations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Rong, K., Wei, J. et al. One-step synthesis of three-dimensional mesoporous Co3O4@Al2O3 nanocomposites with deep eutectic solvent: An efficient and stable peroxymonosulfate activator for organic pollutant degradations. Nano Res. 16, 11430–11443 (2023). https://doi.org/10.1007/s12274-023-5819-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5819-3

Keywords

Navigation