Skip to main content
Log in

Cobalt single atoms supported on monolithic carbon with a hollow-on-hollow architecture for efficient transfer hydrogenations

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-atom catalysts (SACs) have received considerable attention in hydrogenation of nitroaromatic compounds to aromatic amines. In order to enhance the exposure of single atoms and overcome the mass transfer limitation, construction of hierarchical porous supports for single atoms is highly desirable. Herein, we report a straightforward method to synthesize Co single-atoms supported on a hollow-on-hollow structured carbon monolith (Co1/HOHC-M) by pyrolysis of α-cellulose monolith loaded with PS-core@ZnCo-zeolite imidazolate frameworks-shell nanospheres (PS@Zn-ZIFs/α-cellulose). The hollow-on-hollow structure consists of a large hollow void with a diameter of ~ 290 nm (derived from the decomposition of polystyrene (PS) nanospheres) and a thin shell with hollow spherical pores with a diameter of ~ 10 nm (derived from the evaporation of ZnO nanoparticles that are in-situ formed during pyrolysis in the presence of CO2 from α-cellulose decomposition). Benefitting from the hierarchically porous architecture, the Co1/HOHC-M exhibits excellent catalytic performance (reaction rate of 421.6 mmol·gCo−1·h−1) in the transfer hydrogenation of nitrobenzene to aniline, outperforming the powdered sample of Co1/HCS without the hollow spherical mesopores (reaction rate of 353.8 mmol·gCo−1·h−1). It is expected that this strategy could be well extended in heterogeneous catalysis, given the wide applications of porous carbon-supported single-atom catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

    CAS  Google Scholar 

  2. Guan, Q. Q.; Zhu, C. W.; Lin, Y.; Vovk, E. I.; Zhou, X. H.; Yang, Y.; Yu, H. C.; Cao, L. N.; Wang, H. W.; Zhang, X. H. et al. Bimetallic monolayer catalyst breaks the activity-selectivity tradeoff on metal particle size for efficient chemoselective hydrogenations. Nat. Catal. 2021, 4, 840–849.

    CAS  Google Scholar 

  3. Wang, Y.; Qin, R. X.; Wang, Y. K.; Ren, J.; Zhou, W. T.; Li, L. Y.; Ming, J.; Zhang, W. Y.; Fu, G.; Zheng, N. F. Chemoselective hydrogenation of nitroaromatics at the nanoscale iron(III)-OH-platinum interface. Angew. Chem., Int. Ed. 2020, 59, 12736–12740.

    CAS  Google Scholar 

  4. Yang, F.; Wang, M. J.; Liu, W.; Yang, B.; Wang, Y.; Luo, J.; Tang, Y. S.; Hou, L. Q.; Li, Y.; Li, Z. H. et al. Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes. Green Chem. 2019, 21, 704–711.

    CAS  Google Scholar 

  5. Guo, C. Y.; Liang, C. H.; Qin, X. P.; Gu, Y. J.; Gao, P.; Shao, M. H.; Wong, W. T. Zeolitic imidazolate framework cores decorated with Pd nanoparticles and coated further with metal-organic framework shells (ZIF-8@Pd@MOF-74) as nanocatalysts for chemoselective hydrogenation reactions. ACS Appl. Nano Mater. 2020, 3, 7242–7251.

    CAS  Google Scholar 

  6. Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

    CAS  Google Scholar 

  7. Li, L. Y.; Li, Y. X.; Jiao, L.; Liu, X. S.; Ma, Z. T.; Zeng, Y. J.; Zheng, X. S.; Jiang, H. L. Light-induced selective hydrogenation over PdAg nanocages in hollow MOF microenvironment. J. Am. Chem. Soc. 2022, 144, 17075–17085.

    CAS  Google Scholar 

  8. Li, T. B.; Jian, X. Z.; Jiang, Q. K.; Qiao, B. T. Selective hydrogenation of nitroarenes by single-atom Pt catalyst through hydrogen transfer reaction. Top. Catal. 2022, 65, 1604–1608.

    CAS  Google Scholar 

  9. Neeli, C. K. P.; Puthiaraj, P.; Lee, Y. R.; Chung, Y. M.; Baeck, S. H.; Ahn, W. S. Transfer hydrogenation of nitrobenzene to aniline in water using Pd nanoparticles immobilized on amine-functionalized UiO-66. Catal. Today 2018, 303, 227–234.

    CAS  Google Scholar 

  10. Wu, W.; Zhang, W.; Long, Y.; Qin, J. H.; Ma, J. T. Different transfer hydrogenation pathways of halogenated nitrobenzenes catalyzed by Fe-, Co-, or Ni-based species confined in nitrogen doped carbon. Mol. Catal. 2020, 497, 111226.

    CAS  Google Scholar 

  11. Chen, Z. X.; Song, J. T.; Zhang, R. R.; Li, R. L.; Hu, Q. K.; Wei, P. P.; Xi, S. B.; Zhou, X.; Nguyen, P. T. T.; Duong, H. M. et al. Addressing the quantitative conversion bottleneck in single-atom catalysis. Nat. Commun. 2022, 13, 2807.

    CAS  Google Scholar 

  12. Jin, H. Q.; Li, P. P.; Cui, P. X.; Shi, J. A.; Zhou, W.; Yu, X. H.; Song, W. G.; Cao, C. Y. Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites. Nat. Commun. 2022, 13, 723.

    CAS  Google Scholar 

  13. Zhang, G. J.; Tang, F. Y.; Wang, X.; Wang, L. Q.; Liu, Y. N. Atomically dispersed Co-S-N active sites anchored on hierarchically porous carbon for efficient catalytic hydrogenation of nitro compounds. ACS Catal. 2022, 12, 5786–5794.

    CAS  Google Scholar 

  14. Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

    CAS  Google Scholar 

  15. Sun, L. Z.; Lv, H.; Feng, J.; Guselnikova, O.; Wang, Y. Z.; Yamauchi, Y.; Liu, B. Noble-metal-based hollow mesoporous nanoparticles: Synthesis strategies and applications. Adv. Mater. 2022, 34, 2201954.

    CAS  Google Scholar 

  16. Brown, C. M.; Lundberg, D. J.; Lamb, J. R.; Kevlishvili, I.; Kleinschmidt, D.; Alfaraj, Y. S.; Kulik, H. J.; Ottaviani, M. F.; Oldenhuis, N. J.; Johnson, J. A. Endohedrally functionalized metal-organic cage-cross-linked polymer gels as modular heterogeneous catalysts. J. Am. Chem. Soc. 2022, 144, 13276–13284.

    CAS  Google Scholar 

  17. Tian, Z. B.; Dong, C.; Yu, Q.; Ye, R. P.; Duyar, M. S.; Liu, J.; Jiang, H. Q.; Wang, G. H. A universal nanoreactor strategy for scalable supported ultrafine bimetallic nanoparticles synthesis. Mater. Today 2020, 40, 72–81.

    CAS  Google Scholar 

  18. Zhang, F. W.; Li, J. J.; Liu, P. Z.; Li, H.; Chen, S.; Li, Z. H.; Zan, W. Y.; Guo, J. J.; Zhang, X. M. Ultra-high loading single CoN3 sites in N-doped graphene-like carbon for efficient transfer hydrogenation of nitroaromatics. J. Catal. 2021, 400, 40–49.

    CAS  Google Scholar 

  19. Fan, Y. F.; Zhuang, C. F.; Li, S. J.; Wang, Y.; Zou, X. Q.; Liu, X. T.; Huang, W. M.; Zhu, G. S. Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. J. Mater. Chem. A 2021, 9, 1110–1118.

    CAS  Google Scholar 

  20. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

    CAS  Google Scholar 

  21. Li, Y. X.; Lu, X. F.; Xi, S. B.; Luan, D. Y.; Wang, X.; Lou, X. W. Synthesis of N-doped highly graphitic carbon urchin-like hollow structures loaded with single-Ni atoms towards efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202201491.

    CAS  Google Scholar 

  22. Liu, W.; Feng, H. S.; Yang, Y. S.; Niu, Y. M.; Wang, L.; Yin, P.; Hong, S.; Zhang, B. S.; Zhang, X.; Wei, M. Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nat. Commun. 2022, 13, 3188.

    CAS  Google Scholar 

  23. Sun, T.; Zang, W. J.; Yan, H.; Li, J.; Zhang, Z. Q.; Bu, Y. F.; Chen, W.; Wang, J.; Lu, J.; Su, C. L. Engineering the coordination environment of single cobalt atoms for efficient oxygen reduction and hydrogen evolution reactions. ACS Catal. 2021, 11, 4498–4509.

    CAS  Google Scholar 

  24. Wu, F.; Pan, C.; He, C. T.; Han, Y. H.; Ma, W. J.; Wei, H.; Ji, W. L.; Chen, W. X.; Mao, J. J.; Yu, P. et al. Single-atom Co-N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc. 2020, 142, 16861–16867.

    CAS  Google Scholar 

  25. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Google Scholar 

  26. Zhao, C. X.; Liu, J. N.; Wang, J.; Wang, C. D.; Guo, X.; Li, X. Y.; Chen, X.; Song, L.; Li, B. Q.; Zhang, Q. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. Sci. Adv. 2022, 8, eabn5091.

    CAS  Google Scholar 

  27. Zhao, X.; Wang, F. L.; Kong, X. P.; Fang, R. Q.; Li, Y. W. Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis. J. Am. Chem. Soc. 2021, 143, 16068–16077.

    CAS  Google Scholar 

  28. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    CAS  Google Scholar 

  29. Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.

    CAS  Google Scholar 

  30. Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

    CAS  Google Scholar 

  31. Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

    CAS  Google Scholar 

  32. Guo, Y. C.; Liu, F.; Feng, L.; Wang, X. M.; Zhang, X.; Liang, J. S. Single Co atoms anchored on nitrogen-doped hierarchically ordered porous carbon for selective hydrogenation of quinolines and efficient oxygen reduction. Chem. Eng. J. 2022, 429, 132150.

    CAS  Google Scholar 

  33. Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 5359–5364.

    CAS  Google Scholar 

  34. Li, L.; Chen, Y. J.; Xing, H. R.; Li, N.; Xia, J. W.; Qian, X. Y.; Xu, H.; Li, W. Z.; Yin, F. X.; He, G. Y. et al. Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Res. 2022, 15, 8056–8064.

    CAS  Google Scholar 

  35. Wang, Z.; Zhu, C.; Tan, H.; Liu, J.; Xu, L. L.; Zhang, Y. Q.; Liu, Y. P.; Zou, X. X.; Liu, Z.; Lu, X. H. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc-air batteries. Adv. Funct. Mater. 2021, 31, 2104735.

    CAS  Google Scholar 

  36. Wu, C.; Zhu, C. Y.; Liu, K. K.; Yang, S. W.; Sun, Y.; Zhu, K.; Cao, Y. L.; Zhang, S.; Zhuo, S. F.; Zhang, M. et al. Nano-pyramid-type Co-ZnO/NC for hydrogen transfer cascade reaction between alcohols and nitrobenzene. Appl. Catal. B 2022, 300, 120288.

    CAS  Google Scholar 

  37. Zhou, B. J.; Liu, Y. Y.; Wu, X. L.; Liu, H.; Liu, T.; Wang, Y.; Mehdi, S.; Jiang, J. C.; Li, B. J. Wood-derived integrated air electrode with Co-N sites for rechargeable zinc-air batteries. Nano Res. 2022, 15, 1415–1423.

    CAS  Google Scholar 

  38. Li, X.; Surkus, A. E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Brückner, A.; Beller, M. Cobalt single-atom catalysts with high stability for selective dehydrogenation of formic acid. Angew. Chem., Int. Ed. 2020, 59, 15849–15854.

    CAS  Google Scholar 

  39. Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

    Google Scholar 

  40. Xie, W. F.; Song, Y. K.; Li, S. J.; Li, J. B.; Yang, Y. S.; Liu, W.; Shao, M. F.; Wei, M. Single-atomic-Co electrocatalysts with self-supported architecture toward oxygen-involved reaction. Adv. Funct. Mater. 2019, 29, 1906477.

    CAS  Google Scholar 

  41. Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    CAS  Google Scholar 

  42. Doustkhah, E.; Hassandoost, R.; Khataee, A.; Luque, R.; Assadi, M. H. N. Hard-templated metal-organic frameworks for advanced applications. Chem. Soc. Rev. 2021, 50, 2927–2953.

    CAS  Google Scholar 

  43. Feng, B. B.; Guo, R.; Cai, Q. L.; Song, Y. P.; Li, N.; Fu, Y. H.; Chen, D. L.; Zhang, J. W.; Zhu, W. D.; Zhang, F. M. Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni-N3 configuration for enhanced reduction of nitroarenes. Nano Res. 2022, 15, 6001–6009.

    CAS  Google Scholar 

  44. Guan, B. Y.; Yu, L.; Lou, X. W. Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media. Adv. Sci. 2017, 4, 1700247.

    Google Scholar 

  45. Yang, H. Z.; Wang, X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.

    Google Scholar 

  46. Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

    CAS  Google Scholar 

  47. Ye, C. L.; Chen, X. J.; Li, S. S.; Feng, B. B.; Fu, Y. H.; Zhang, F. M.; Chen, D. L.; Zhu, W. D. PdZn intermetallic compound stabilized on ZnO/nitrogen-decorated carbon hollow spheres for catalytic semihydrogenation of alkynols. Nano Res. 2022, 15, 3090–3098.

    CAS  Google Scholar 

  48. Zhang, F.; Wei, Y. Y.; Wu, X. T.; Jiang, H. Y.; Wang, W.; Li, H. X. Hollow zeolitic imidazolate framework nanospheres as highly efficient cooperative catalysts for [3 + 3] cycloaddition reactions. J. Am. Chem. Soc. 2014, 136, 13963–13966.

    CAS  Google Scholar 

  49. Li, J. J.; Xia, W.; Tang, J.; Gao, Y.; Jiang, C.; Jia, Y. N.; Chen, T.; Hou, Z. F.; Qi, R. J.; Jiang, D. et al. Metal-organic framework-derived graphene mesh: A robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 2022, 144, 9280–9291.

    CAS  Google Scholar 

  50. Han, X.; Zhang, T. Y.; Wang, X. H.; Zhang, Z. D.; Li, Y. P.; Qin, Y. J.; Wang, B. Q.; Han, A. J.; Liu, J. F. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 2022, 13, 2900.

    CAS  Google Scholar 

  51. Lee, G.; Na, W.; Kim, J.; Lee, S.; Jang, J. Improved electrochemical performances of MOF-derived Ni-Co layered double hydroxide complexes using distinctive hollow-in-hollow structures. J. Mater. Chem. A 2019, 7, 17637–17647.

    CAS  Google Scholar 

  52. Yu, L.; Yang, J. F.; Lou, X. W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew. Chem., Int. Ed. 2016, 55, 13422–13426.

    CAS  Google Scholar 

  53. Zhang, J. T.; Zhang, L. P.; Wang, X. D.; Zhu, W.; Zhuang, Z. B. A hierarchical hollow-on-hollow NiCoP electrocatalyst for efficient hydrogen evolution reaction. Chem. Commun. 2020, 56, 90–93.

    CAS  Google Scholar 

  54. Zhang, X. F.; Wang, Z. G.; Ding, M. L.; Feng, Y.; Yao, J. F. Advances in cellulose-metal organic framework composites: Preparation and applications. J. Mater. Chem. A 2021, 9, 23353–23363.

    CAS  Google Scholar 

  55. Cui, J.; Xu, X. R.; Yang, L. Y.; Chen, C. T.; Qian, J. S.; Chen, X.; Sun, D. P. Soft foam-like UiO-66/polydopamine/bacterial cellulose composite for the removal of aspirin and tetracycline hydrochloride. Chem. Eng. J. 2020, 395, 125174.

    CAS  Google Scholar 

  56. Chen, M. W.; Liu, T.; Zhang, X. B.; Zhang, R. Q.; Tang, S.; Yuan, Y. H.; Xie, Z. J.; Liu, Y. J.; Wang, H.; Fedorovich, K. V. et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv. Funct. Mater. 2021, 31, 2100106.

    CAS  Google Scholar 

  57. Abramova, A.; Couzon, N.; Leloire, M.; Nerisson, P.; Cantrel, L.; Royer, S.; Loiseau, T.; Volkringer, C.; Dhainaut, J. Extrusion-spheronization of UiO-66 and UiO-66_NH2 into robust-shaped solids and their use for gaseous molecular iodine, xenon, and krypton adsorption. ACS Appl. Mater. Interfaces 2022, 14, 10669–10680.

    CAS  Google Scholar 

  58. Ni, W. P.; Liu, Z. X.; Guo, X. G.; Zhang, Y.; Ma, C.; Deng, Y. J.; Zhang, S. G. Dual single-cobalt atom-based carbon electrocatalysts for efficient CO2-to-syngas conversion with industrial current densities. Appl. Catal. B 2021, 291, 120092.

    CAS  Google Scholar 

  59. Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G. et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.

    Google Scholar 

  60. Zhang, F.; Ma, J.; Tan, Y.; Yu, G.; Qin, H. X.; Zheng, L. R.; Liu, H. B.; Li, R. Construction of porphyrin porous organic cage as a support for single cobalt atoms for photocatalytic oxidation in visible light. ACS Catal. 2022, 12, 5827–5833.

    CAS  Google Scholar 

  61. Zhu, Y. Q.; Sun, W. M.; Chen, W. X.; Cao, T.; Xiong, Y.; Luo, J.; Dong, J. C.; Zheng, L. R.; Zhang, J.; Wang, X. L. et al. Scale-up biomass pathway to cobalt single-site catalysts anchored on N-doped porous carbon nanobelt with ultrahigh surface area. Adv. Funct. Mater. 2018, 28, 1802167.

    Google Scholar 

  62. Fei, H. F.; Long, Y. D.; Yu, H. J.; Yavitt, B. M.; Fan, W.; Ribbe, A.; Watkins, J. J. Bimodal mesoporous carbon spheres with small and ultra-large pores fabricated using amphiphilic brush block copolymer micelle templates. ACS Appl. Mater. Interfaces 2020, 12, 57322–57329.

    CAS  Google Scholar 

  63. Shen, W. Z.; Hu, T. P.; Fan, W. B. Cellulose generated-microporous carbon nanosheets with nitrogen doping. RSC Adv. 2014, 4, 9126–9132.

    CAS  Google Scholar 

  64. Wang, F. X.; Liang, L.; Shi, L.; Liu, M. S.; Sun, J. M. CO2-assisted synthesis of mesoporous carbon/C-doped ZnO composites for enhanced photocatalytic performance under visible light. Dalton Trans. 2014, 43, 16441–16449.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52100169) and the Natural Science Foundation of Shandong Province (Nos. ZR2020QB196, ZR2022ZD30, and ZR2020QB053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to De-Chang Li, Minghua Huang or Guang-Hui Wang.

Electronic Supplementary Material

12274_2023_5813_MOESM1_ESM.pdf

Cobalt single atoms supported on monolithic carbon with a hollow-on-hollow architecture for efficient transfer hydrogenations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Li, DC., Zhang, Q. et al. Cobalt single atoms supported on monolithic carbon with a hollow-on-hollow architecture for efficient transfer hydrogenations. Nano Res. 16, 11358–11365 (2023). https://doi.org/10.1007/s12274-023-5813-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5813-9

Keywords

Navigation