Skip to main content
Log in

Metal-organic framework hybrid materials of ZIF-8/RGO for immobilization of D-amino acid dehydrogenase

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Immobilization of D-amino acid dehydrogenase (DAADH) by the assembly of peptide linker was studied for the biosynthesis of D-phenylalanine. Hybrid material of zeolitic imidazolate framework-8 (ZIF-8) combined with reduced graphene oxide (RGO) was applied for the immobilization of DAADH from Ureibacillus thermosphaericus. The recovery rate of DAADH/ZIF-8/RGO was 165.6%. DAADH/ZIF-8/RGO remained 53.4% of its initial activity at 50 °C for 10 h while the free enzyme was inactivated. DAADH/ZIF-8/RGO maintained 70.5% activity in hyperalkaline solution with pH 12. Kinetic parameters indicated that DAADH/ZIF-8/RGO had greater affinity of phenylpyruvate as Vmax/Km of DAADH/ZIF-8/RGO was 1.27-fold than free enzyme. After seven recycles, the activity of DAADH/ZIF-8/RGO remained 64.3%. Furthermore, one-step separation and in situ immobilization of DAADH by ZIF-8/RGO/Ni was carried out with 1.5-fold activity enhancement. Combining peptide linker and metal-organic framework (MOF) immobilization, thermostability and activity of the immobilized DAADH were significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pollegioni L.; Rosini E.; Molla G. Advances in enzymatic synthesis of D-amino acids. Int. J. Mol. Sci. 2020, 21, 3206.

    Article  CAS  Google Scholar 

  2. Genchi G. An overview on D-amino acids. Amino Acids 2017, 49, 1521–1533.

    Article  CAS  Google Scholar 

  3. Masuda, K.; Koizumi, A.; Misaka, T.; Hatanaka, Y.; Abe, K.; Tanaka, T.; Ishiguro, M.; Hashimoto, M. Photoactive ligands probing the sweet taste receptor. Design and synthesis of highly potent diazirinyl D-phenylalanine derivatives.. Bioorg. Med. Chem. Lett. 2010, 20, 1081–1083.

    Article  CAS  Google Scholar 

  4. Lu, C.; Zhang, S.; Song, W.; Liu, J.; Chen, X. L.; Liu, L. M.; Wu, J. Efficient synthesis of D-phenylalanine from L-phenylalanine via a trienzymatic cascade pathway. ChemCatChem 2021, 13, 3165–3173.

    Article  CAS  Google Scholar 

  5. Gao, X. Z.; Ma, Q. Y.; Zhu, H. L. Distribution, industrial applications, and enzymatic synthesis of D-amino acids. Appl. Microbiol. Biotechnol. 2015, 99, 3341–3349.

    Article  CAS  Google Scholar 

  6. Fan, A. W.; Li, J. R.; Yu, Y. Q.; Zhang, D. P.; Nie, Y.; Xu, Y. Enzymatic cascade systems for D-amino acid synthesis: Progress and perspectives. Syst. Microbiol. Biomanuf. 2021, 1, 397–410.

    Article  CAS  Google Scholar 

  7. Vedha-Peters, K.; Gunawardana, M.; Rozzell, J. D.; Novick, S. J. Creation of a broad-range and highly stereoselective D-amino acid dehydrogenase for the one-step synthesis of D-amino acids. J. Am. Chem. Soc. 2006, 128, 10923–10929.

    Article  CAS  Google Scholar 

  8. Hayashi, J.; Seto, T.; Akita, H.; Watanabe, M.; Hoshino, T.; Yoneda, K.; Ohshima, T.; Sakuraba, H. Structure-based engineering of an artificially generated NADP+-dependent D-amino acid dehydrogenase. Appl. Environ. Microbiol. 2017, 83, e00491–17.

    Article  CAS  Google Scholar 

  9. Gao, X. Z.; Ma, Q. Y.; Chen, M. L.; Dong, M. M.; Pu, Z. J.; Zhang, X. H.; Song, Y. D. Insight into the highly conserved and differentiated cofactor-binding sites of meso-diaminopimelate dehydrogenase StDAPDH. J. Chem. Inf. Model. 2019, 59, 2331–2338.

    Article  CAS  Google Scholar 

  10. Akita, H.; Hayashi, J.; Sakuraba, H.; Ohshima, T. Artificial thermostable D-amino acid dehydrogenase: Creation and application. Front. Microbiol. 2018, 9, 1760.

    Article  Google Scholar 

  11. Wang, S. Y.; Duan, L. X.; Jiang, L.; Liu, K. L.; Wang, S. Z. Assembly of peptide linker to amino acid dehydrogenase and immobilized with metal-organic framework. J. Chem. Technol. Biotechnol. 2022, 97, 741–748.

    Article  CAS  Google Scholar 

  12. Song, Z.; Li, Y.; Teng, H.; Ding, C. F.; Xu, G. Y.; Luo, X. L. Designed zwitterionic peptide combined with sacrificial Fe-MOF for low fouling and highly sensitive electrochemical detection of T4 polynucleotide kinase. Sens. Actuat B: Chem. 2020, 305, 127329.

    Article  CAS  Google Scholar 

  13. Zernia, S.; Frank, R.; Weiße, R. H. J.; Jahnke, H. G.; Bellmann-Sickert, K.; Prager, A.; Abel, B.; Sträter, N.; Robitzki, A.; Beck-Sickinger, A. G. Surface-binding peptide facilitates electricity-driven NADPH-free cytochrome P450 catalysis. ChemCatChem 2018, 10, 525–530.

    Article  CAS  Google Scholar 

  14. Kuhlman, B.; Jacobs, T.; Linskey, T. Computational design of protein linkers. In Computational Design of Ligand Binding Proteins; B. L. Stoddard, Ed.; Springer: New York, 2016; pp 341–351.

    Chapter  Google Scholar 

  15. Liang, S.; Wu, X. L.; Xiong, J.; Zong, M. H.; Lou, W. Y. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord. Chem. Rev. 2020, 406, 213149.

    Article  CAS  Google Scholar 

  16. Liang, J. Y.; Mazur, F.; Tang, C. Y.; Ning, X. N.; Chandrawati, R.; Liang, K. Peptide-induced super-assembly of biocatalytic metal-organic frameworks for programmed enzyme cascades. Chem. Sci. 2019, 10, 7852–7858.

    Article  CAS  Google Scholar 

  17. Sha, F. R.; Chen, Y. J.; Drout, R. J.; Idrees, K. B.; Zhang, X.; Farha, O. K. Stabilization of an enzyme cytochrome c in a metal-organic framework against denaturing organic solvents. Iscience 2021, 24, 102641.

    Article  CAS  Google Scholar 

  18. Gascón, V.; Carucci, C.; Jiménez, M. B.; Blanco, R. M.; Sánchez-Sánchez, M.; Magner, E. Rapid in situ immobilization of enzymes in metal-organic framework supports under mild conditions. ChemCatChem 2017, 9, 1182–1186.

    Article  Google Scholar 

  19. Yao, Y.; Hou, C. Y.; Zhang, X. Construct α-FeOOH-reduced graphene oxide aerogel as a carrier for glucose oxidase electrode. Membranes 2022, 12, 447.

    Article  CAS  Google Scholar 

  20. Liang, H. C.; Liu, X. Y.; Gao, D. L.; Ni, J. F.; Li, Y. Reduced graphene oxide decorated with Bi2O233 nanodots for superior lithium storage. Nano Res. 2017, 10, 3690–3697.

    Article  CAS  Google Scholar 

  21. Kaffash, A.; Zare, H. R.; Rostami, K. Highly sensitive biosensing of phenol based on the adsorption of the phenol enzymatic oxidation product on the surface of an electrochemically reduced graphene oxide-modified electrode. Analy. Methods 2018, 10, 2731–2739.

    Article  CAS  Google Scholar 

  22. Shen, L.; Ying, J.; Ren, L.; Yao, Y.; Lu, Y.; Dong, Y.; Tian, G.; Yang, X. Y.; Su, B. L. 3D graphene-based macro-mesoporous frameworks as enzymatic electrodes. J. Phys. Chem. Solids 2019, 130, 1–5.

    Article  CAS  Google Scholar 

  23. Liu, K. L.; Wang, S. Y.; Duan, L. X.; Jiang, L.; Wang, S. Z. Effect of ionic liquids on catalytic characteristics of hyperthermophilic and halophilic phenylalanine dehydrogenase and mechanism study. Biochem. Eng. J. 2021, 176, 108175.

    Article  CAS  Google Scholar 

  24. Calderón, C.; Contreras, R.; Campodónico, R. Surfactant-mediated enzymatic superactivity in water/ionic liquid mixtures, evaluated on a model hydrolytic reaction catalyzed by α-chymotrypsin. J. Mol. Liq. 2019, 283, 522–531.

    Article  Google Scholar 

  25. Meneely, K. M.; Sundlov, J. A.; Gulick, A. M.; Moran, G. R.; Lamb, A. L. An open and shut case: The interaction of magnesium with MST enzymes. J. Am. Chem. Soc. 2016, 138, 9277–9293.

    Article  CAS  Google Scholar 

  26. Kokkonen, P.; Bednar, D.; Pinto, G.; Prokop, Z.; Damborsky, J. Engineering enzyme access tunnels. Biotechnol. Adv. 2019, 37, 107386.

    Article  CAS  Google Scholar 

  27. Banerjee, P. C.; Lobo, D. E.; Middag, R.; Ng, W. K.; Shaibani, M. E.; Majumder, M. Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: More than the sum of its parts. ACS Appl. Mater. Interfaces 2015, 7, 3655–3664.

    Article  CAS  Google Scholar 

  28. Zhang, Y.; Zhang, J. Y.; Huang, X. L.; Zhou, X. J.; Wu, H. X.; Guo, S. W. Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 2012, 8, 154–159.

    Article  CAS  Google Scholar 

  29. Singh, K.; Mishra, A.; Sharma, D.; Singh, K. Nanotechnology in enzyme immobilization: An overview on enzyme immobilization with nanoparticle matrix. Curr. Nanosci. 2019, 15, 234–241.

    Article  CAS  Google Scholar 

  30. Zhang, J.; Jin, N.; Ji, N.; Chen, X. Y.; Shen, Y.; Pan, T.; Li, L.; Li, S.; Zhang, W. N.; Huo, F. W. The encounter of biomolecules in metal-organic framework micro/nano reactors. ACS Appl. Mater. Interfaces 2021, 13, 52215–52233.

    Article  CAS  Google Scholar 

  31. Huang, S. M.; Kou, X. X.; Shen, J.; Chen, G. S.; Ouyang, G. F. “Armor-plating” enzymes with metal-organic frameworks (MOFs). Angew. Chem., Int. Ed. 2020, 59, 8786–8798.

    Article  CAS  Google Scholar 

  32. Yang, X. G.; Zhang, J. R.; Tian, X. K.; Qin, J. H.; Zhang, X. Y.; Ma, L. F. Enhanced activity of enzyme immobilized on hydrophobic ZIF-8 modified by Ni2+ inns. Angew. Chem., Int. Ed. 2023, 62, e202216699.

    Article  CAS  Google Scholar 

  33. Patel, S. K. S.; Choi, H.; Lee, J. K. Multimetal-based inorganic–protein hybrid system for enzyme immobilization. ACS Sustainable Chem. Eng. 2019, 7, 13633–13638.

    Article  CAS  Google Scholar 

  34. Zhao, M.; Han, J.; Wu, J. C.; Li, Y. Y.; Zhou, Y.; Wang, L.; Wang, Y. One-step separation and immobilization of his-tagged enzyme directly from cell lysis solution by biomimetic mineralization approach. Biochem. Eng. J. 2021, 167, 107893.

    Article  CAS  Google Scholar 

  35. Li, Y. M.; Yuan, J.; Ren, H.; Ji, C. Y.; Tao, Y.; Wu, Y. H.; Chou, L. Y.; Zhang, Y. B.; Cheng, L. Fine-tuning the micro-environment to optimize the catalytic activity of enzymes immobilized in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2021, 143, 15378–15390.

    Article  CAS  Google Scholar 

  36. Adnan, M.; Li, K.; Xu, L.; Yan, Y. J. X-shaped ZIF-8 for immobilization Rhizomucor miehei lipase via encapsulation and its application toward biodiesel production. Catalysts 2018, 8, 96.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21776233 and 22078273) and National Key Research and Development Program (No. 2022YFA0912000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizhen Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, H., Zhang, Q., Xiang, X. et al. Metal-organic framework hybrid materials of ZIF-8/RGO for immobilization of D-amino acid dehydrogenase. Nano Res. 17, 290–296 (2024). https://doi.org/10.1007/s12274-023-5811-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5811-y

Keywords

Navigation