Skip to main content
Log in

Piezoelectric wearable atrial fibrillation prediction wristband enabled by machine learning and hydrogel affinity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is a common and serious disease. Its diagnosis usually requires 12-lead electrocardiogram, which is heavy and inconvenient. At the same time, the venue for diagnosis is also limited to the hospital. With the development of the concept of intelligent medical, a wearable, portable, and reliable diagnostic method is needed to improve the patient’s comfort and alleviate the patient’s pain. Here, we reported a wearable atrial fibrillation prediction wristband (AFPW) which can provide long-term monitoring and AF diagnosis. AFPW uses polyvinylidene fluoride piezoelectric film as sensing material and hydrogel as skin bonding material, of which the structure and design have been optimized and improved. The hydrogel skin bonding layer has good stability and skin affinity, which can greatly improve the user experience. AFPW has enhanced signal, strong signal-to-noise ratio, and wireless transmission function. After a sample library of 385 normal people/patients is analyzed and tested by linear discriminant analysis, the diagnostic success rate of atrial fibrillation is 91%. All these excellent performances demonstrate the great application potential of AFPW in wearable device diagnosis and intelligent medical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso, A.; Almuwaqqat, Z.; Chamberlain, A. Mortality in atrial fibrillation. Is it changing? Trends Cardiovasc. Med. 2021, 31, 469–473.

    Article  Google Scholar 

  2. Salih, M.; Abdel-Hafez, O.; Ibrahim, R.; Nair, R. Atrial fibrillation in the elderly population: Challenges and management considerations. J. Arrhythmia 2021, 37, 912–921.

    Article  Google Scholar 

  3. Song, J. S. The Chinese burden of atrial fibrillation review of atrial fibrillation studies in China. Ann. Noninvasive Electrocardiol. 2022, 27, e12957.

    Article  Google Scholar 

  4. Wang, Z. W.; Zhang, L. F.; Chen, Z.; Wang, X.; Li, S. N.; Dong, Y.; Zheng, C. Y.; Wang, J. L.; Kang, Y. T. A2528 the disease burden of atrial fibrillation in China: Data from a national cross-section survey. J. Hypertens. 2018, 36, E281.

    Google Scholar 

  5. Bizhanov, K. A.; Abzaliyev, K. B.; Baimbetov, A. K.; Sarsenbayeva, A. B.; Lyan, E. Atrial fibrillation: Epidemiology, pathophysiology, and clinical complications (literature review). J. Cardiovasc. Electrophysiol. 2023, 34, 153–165.

    Article  Google Scholar 

  6. Collado, F. M. S.; Von Buchwald, C. M. L.; Anderson, C. K.; Madan, N.; Suradi, H. S.; Huang, H. D.; Jneid, H.; Kavinsky, C. J. Left atrial appendage occlusion for stroke prevention in nonvalvular atrial fibrillation. J. Am. Heart Assoc. 2021, 10, e022274.

    Article  Google Scholar 

  7. Wang, Y. C.; Xu, X. B.; Hajra, A.; Apple, S.; Kharawala, A.; Duarte, G.; Liaqat, W.; Fu, Y. W.; Li, W. J.; Chen, Y. Y. et al. Current advancement in diagnosing atrial fibrillation by utilizing wearable devices and artificial intelligence: A review study. Diagnostics 2022, 12, 689.

    Article  CAS  Google Scholar 

  8. Gunawardene, M. A.; Willems, S. Atrial fibrillation progression and the importance of early treatment for improving clinical outcomes. Europace 2022, 24, ii22–ii28.

    Article  Google Scholar 

  9. Tooley, J. E.; Perez, M. V. Role of digital health in detection and management of atrial fibrillation. Heart 2022, 108, 834–839.

    Article  Google Scholar 

  10. Duncker, D.; Ding, W. Y.; Etheridge, S.; Noseworth, P. A.; Veltmann, C.; Yao, X. X.; Bunch, T. J.; Gupta, D. Smart wearables for cardiac monitoring-real-world use beyond atrial fibrillation. Sensors 2021, 21, 2539.

    Article  Google Scholar 

  11. Sattar, Y.; Song, D.; Sarvepalli, D.; Zaidi, S. R.; Ullah, W.; Arshad, J.; Mir, T.; Zghouzi, M.; Elgendy, I. Y.; Qureshi, W. et al. Accuracy of pulsatile photoplethysmography applications or handheld devices vs. 12-lead ECG for atrial fibrillation screening: A systematic review and meta-analysis. J. Interv. Card. Electrophysiol. 2022, 65, 33–44.

    Article  Google Scholar 

  12. Kim, H. L.; Weber, T. Pulsatile hemodynamics and coronary artery disease. Korean Circ. J. 2021, 51, 881–898.

    Article  CAS  Google Scholar 

  13. Guo, C. X.; Jiang, Z. X.; He, H. Z.; Liao, Y. N.; Zhang, D. Wrist pulse signal acquisition and analysis for disease diagnosis: A review. Comput. Biol. Med. 2022, 143, 105312.

    Article  Google Scholar 

  14. Chen, G. R.; Au, C.; Chen, J. Textile triboelectric nanogenerators for wearable pulse wave monitoring. Trends Biotechnol. 2021, 39, 1078–1092.

    Article  CAS  Google Scholar 

  15. Meng, K. Y.; Xiao, X.; Wei, W. X.; Chen, G. R.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, 2270158.

    Article  Google Scholar 

  16. Osawa, Y.; Hata, S.; Hori, M.; Dohi, T. Comparison of features by simultaneous measurement of blood pressure pulse wave and electrocardiogram. In 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, Canada, 2020, pp 4664–4667.

  17. Wegner, F. K.; Plagwitz, L.; Doldi, F.; Ellermann, C.; Willy, K.; Wolfes, J.; Sandmann, S.; Varghese, J.; Eckardt, L. Machine learning in the detection and management of atrial fibrillation. Clin. Res. Cardiol. 2022, 111, 1010–1017.

    Article  Google Scholar 

  18. Mainali, S.; Darsie, M. E.; Smetana, K. S. Machine learning in action: Stroke diagnosis and outcome prediction. Front. Neurol. 2021, 12, 734345.

    Article  Google Scholar 

  19. Chang, C. H.; Lin, C. H.; Lane, H. Y. Machine learning and novel biomarkers for the diagnosis of Alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 2761.

    Article  CAS  Google Scholar 

  20. Wang, Y.; Zhu, L. P.; Du, C. F. Progress in piezoelectric nanogenerators based on PVDF composite films. Micromachines 2021, 12, 1278.

    Article  Google Scholar 

  21. Lee, C.; Park, H.; Lee, J. H. Recent structure development of poly(vinylidene fluoride)-based piezoelectric nanogenerator for self-powered sensor. Actuators 2020, 9, 57.

    Article  Google Scholar 

  22. Tan, P. C.; Xi, Y.; Chao, S. Y.; Jiang, D. J.; Liu, Z.; Fan, Y. B.; Li, Z. An artificial intelligence-enhanced blood pressure monitor wristband based on piezoelectric nanogenerator. Biosensors 2022, 12, 234.

    Article  CAS  Google Scholar 

  23. Cao, Y.; Yang, Y.; Qu, X. C.; Shi, B. J.; Xu, L. L.; Xue, J. T.; Wang, C.; Bai, Y.; Gai, Y. S.; Luo, D. et al. A self-powered triboelectric hybrid coder for human–machine interaction. Small Methods 2022, 6, 2101529.

    Article  Google Scholar 

  24. Kalimuldina, G.; Turdakyn, N.; Abay, I.; Medeubayev, A.; Nurpeissova, A.; Adair, D.; Bakenov, Z. A review of piezoelectric PVDF film by electrospinning and its applications. Sensors 2020, 20, 5214.

    Article  CAS  Google Scholar 

  25. Mirjalali, S.; Varposhti, A. M.; Abrishami, S.; Bagherzadeh, R.; Asadnia, M.; Huang, S. J.; Peng, S. H.; Wang, C. H.; Wu, S. Y. A review on wearable electrospun polymeric piezoelectric sensors and energy harvesters. Macromol. Mater. Eng. 2023, 308, 2200442.

    Article  CAS  Google Scholar 

  26. Arica, T. A.; Isık, T.; Guner, T.; Horzum, N.; Demir, M. M. Advances in electrospun fiber-based flexible nanogenerators for wearable applications. Macromol. Mater. Eng. 2021, 306, 2100143.

    Article  CAS  Google Scholar 

  27. Gai, Y. S.; Wang, E. G.; Liu, M. H.; Xie, L. R.; Bai, Y.; Yang, Y.; Xue, J. T.; Qu, X. C.; Xi, Y.; Li, L. L. et al. A self-powered wearable sensor for continuous wireless sweat monitoring. Small Methods 2022, 6, 2200653.

    Article  CAS  Google Scholar 

  28. Zhang, J.; Wang, Y. E.; Wei, Q. H.; Wang, Y. M.; Lei, M. J.; Li, M. Y.; Li, D. H.; Zhang, L. Y.; Wu, Y. Self-healing mechanism and conductivity of the hydrogel flexible sensors: A review. Gels 2021, 7, 216.

    Article  CAS  Google Scholar 

  29. Chao, S. Y.; Ouyang, H.; Jiang, D. J.; Fan, Y. B.; Li, Z. Triboelectric nanogenerator based on degradable materials. EcoMat 2021, 3, e12072.

    Article  CAS  Google Scholar 

  30. Wang, C.; Liu, Y.; Qu, X. C.; Shi, B. J.; Zheng, Q.; Lin, X. B.; Chao, S. Y.; Wang, C. Y.; Zhou, J.; Sun, Y. et al. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber. Adv. Mater. 2022, 34, 2105416.

    Article  CAS  Google Scholar 

  31. Liu, Y.; Wang, C.; Xue, J. T.; Huang, G. H.; Zheng, S.; Zhao, K.; Huang, J.; Wang, Y. Q.; Zhang, Y.; Yin, T. L. et al. Body temperature enhanced adhesive, antibacterial, and recyclable ionic hydrogel for epidermal electrophysiological monitoring. Adv. Health. Mater. 2022, 11, 2270092.

    Article  Google Scholar 

  32. Xu, J. P.; Tsai, Y. L.; Hsu, S. H. Design strategies of conductive hydrogel for biomedical applications. Molecules 2020, 25, 5296.

    Article  CAS  Google Scholar 

  33. Nele, V.; Wojciechowski, J. P.; Armstrong, J. P. K.; Stevens, M. M. Tailoring gelation mechanisms for advanced hydrogel applications. Adv. Funct. Mater. 2020, 30, 2002759.

    Article  CAS  Google Scholar 

  34. Mynard, J. P.; Kondiboyina, A.; Kowalski, R.; Cheung, M. M. H.; Smolich, J. J. Measurement, analysis, and interpretation of pressure/flow waves in blood vessels. Front. Physiol. 2020, 11, 1085.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. T2125003, 82202075, and 82102231), the Beijing Natural Science Foundation (Nos. JQ20038 and L212010), the National Postdoctoral Program for Innovative Talent (No. BX20220380), and the China Postdoctoral Science Foundation (No. 2022M710389). The authors thank everyone who contributed to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Hua, Puchuan Tan, Yubo Fan or Zhou Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Y., Cheng, S., Chao, S. et al. Piezoelectric wearable atrial fibrillation prediction wristband enabled by machine learning and hydrogel affinity. Nano Res. 16, 11674–11681 (2023). https://doi.org/10.1007/s12274-023-5804-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5804-x

Keywords

Navigation