Skip to main content
Log in

Recent advances in multifunctional shape memory photonic crystals and practical applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Shape memory photonic crystals (SMPCs) are smart composite materials with changeable structural color integrated by shape memory polymer and photonic crystals. SMPC can produce one or more temporary shapes through nanoscale deformation, memorizing current states. SMPC can be recovered to their original shapes or some intermediate states under external stimuli, accompanied by the variation of structural color. As porous carriers with built-in sensing properties, SMPCs promoted the interdisciplinary development of nanophotonic technology in materials science, environmental engineering, biomedicine, chemical engineering, and mechanics. Herein, the recent progress on multifunctional SMPCs and practical applications, including traditional and cold programmable SMPCs, is summarized and discussed. The primary concern is shape programming at the nanoscale that has demonstrated numerous attractive functions, including smart sensing, ink-free printing, solvent detection, reprogrammable gradient wetting, and controllable bubble transportation, under variations of the surface nanostructure. It aims to figure out the nanoscale shape memory effects on structural color conversion and additional performance, inspiring the fabrication of the next generation of SMPCs. Finally, perspectives on future research directions and applications are also presented. It is believed that multifunctional SMPCs are powerful nanophotonic tools for the interdisciplinary development of numerous disciplines in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grassly, N. C.; Fraser, C.; Garnett, G. P. Host immunity and synchronized epidemics of syphilis across the United States. Nature 2005, 433, 417–421.

    Article  CAS  Google Scholar 

  2. Durak, G. M.; Thierer, R.; Sachse, R.; Bischoff, M.; Speck, T.; Poppinga, S. Smooth or with a snap! Biomechanics of trap reopening in the venus flytrap (Dionaea muscipula). Adv. Sci. 2022, 9, 2201362.

    Article  CAS  Google Scholar 

  3. Lendlein, A.; Gould, O. E. C. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat. Rev. Mater. 2019, 4, 116–133.

    Article  Google Scholar 

  4. Teyssier, J.; Saenko, S. V.; van der Marel, D.; Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368.

    Article  CAS  Google Scholar 

  5. Schauer, S.; Baumberg, J. J.; Hölscher, H.; Smoukov, S. K. Tuning of structural colors like a chameleon enabled by shape-memory polymers. Macromol. Rapid Commun. 2018, 39, 1800518.

    Article  Google Scholar 

  6. Wu, Y.; Wang, Y.; Zhang, S. F.; Wu, S. L. Artificial chameleon skin with super-sensitive thermal and mechanochromic response. ACS Nano 2021, 15, 15720–15729.

    Article  CAS  Google Scholar 

  7. Lee, G. H.; Han, S. H.; Kim, J. B.; Kim, J. H.; Lee, J. M.; Kim, S. H. Colloidal photonic inks for mechanochromic films and patterns with structural colors of high saturation. Chem. Mater. 2019, 31, 8154–8162.

    Article  CAS  Google Scholar 

  8. Hou, Z. L.; Li, X. B.; Zhang, X. R.; Zhang, W. D.; Wang, Z. L.; Zhang, H. L. A bioinspired, self-powered, flytrap-based sensor and actuator enabled by voltage triggered hydrogel electrodes. Nano Res., in press, https://doi.org/10.1007/s12274-023-5621-2.

  9. Zhang, Z. H.; Chen, Z. Y.; Wang, Y.; Chi, J. J.; Wang, Y. T.; Zhao, Y. J. Bioinspired bilayer structural color hydrogel actuator with multienvironment responsiveness and survivability. Small Methods 2019, 3, 1900519.

    Article  CAS  Google Scholar 

  10. Wei, J. J.; Li, R.; Li, L.; Wang, W. Q.; Chen, T. Touch-responsive hydrogel for biomimetic flytrap-like soft actuator. Nano-Micro Lett. 2022, 14, 182.

    Article  CAS  Google Scholar 

  11. Li, H. T.; Zhu, M. J.; Tian, F.; Hua, W. Q.; Guo, J.; Wang, C. C. Polychrome photonic crystal stickers with thermochromic switchable colors for anti-counterfeiting and information encryption. Chem. Eng. J. 2021, 426, 130683.

    Article  CAS  Google Scholar 

  12. Boott, C. E.; Soto, M. A.; Hamad, W. Y.; MacLachlan, M. J. Shape-memory photonic thermoplastics from cellulose nanocrystals. Adv. Funct. Mater. 2021, 31, 2103268.

    Article  CAS  Google Scholar 

  13. Belmonte, A.; da Cunha, M. P.; Nickmans, K.; Schenning, A. P. H. J. Brush-paintable, temperature and light responsive triple shape-memory photonic coatings based on micrometer-sized cholesteric liquid crystal polymer particles. Adv. Opt. Mater. 2020, 8, 2000054.

    Article  CAS  Google Scholar 

  14. Wang, X. Y.; Xu, J.; Zhang, X. R.; Yang, Z. H.; Zhang, Y. M.; Wang, T. M.; Wang, Q. H. Molecularly engineered unparalleled strength and supertoughness of poly(urea-urethane) with shape memory and clusterization-triggered emission. Adv. Mater. 2022, 34, 2205763.

    Article  CAS  Google Scholar 

  15. Cheng, Z. J.; Zhang, D. J.; Luo, X.; Lai, H.; Liu, Y. Y.; Jiang, L. Superwetting shape memory microstructure: Smart wetting control and practical application. Adv. Mater. 2021, 33, 2001718.

    Article  CAS  Google Scholar 

  16. Chen, G. C.; Jin, B. J.; Shi, Y. P.; Zhao, Q.; Shen, Y. Q.; Xie, T. Rapidly and repeatedly reprogrammable liquid crystalline elastomer via a shape memory mechanism. Adv. Mater. 2022, 34, 2201679.

    Article  CAS  Google Scholar 

  17. Kolesov, I.; Dolynchuk, O.; Borreck, S.; Radusch, H. J. Morphology-controlled multiple one- and two-way shape-memory behavior of cross-linked polyethylene/poly(ε-caprolactone) blends. Polym. Adv. Technol. 2014, 25, 1315–1322.

    Article  CAS  Google Scholar 

  18. Zhao, R. Y.; Zhao, T. P.; Jiang, X. Q.; Liu, X.; Shi, D.; Liu, C. Y.; Yang, S.; Chen, E. Q. Thermoplastic high strain multishape memory polymer: Side-chain polynorbornene with columnar liquid crystalline phase. Adv. Mater. 2017, 29, 1605908.

    Article  Google Scholar 

  19. Lai, S. M.; Li, C. H.; Kao, H. C.; Liu, L. C. Shape memory properties of melt-blended olefin block copolymer (OBC)/ethylene-vinyl acetate blends. J. Macromol. Sci. Part B: Phys. 2019, 58, 174–191.

    Article  CAS  Google Scholar 

  20. Du, H. Y.; Liu, L. W.; Zhang, F. H.; Zhao, W.; Leng, J. S.; Liu, Y. J. Thermal-mechanical behavior of styrene-based shape memory polymer tubes. Polym. Test. 2017, 57, 119–125.

    Article  CAS  Google Scholar 

  21. Zheng, N.; Fang, Z. Z.; Zou, W. K.; Zhao, Q.; Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem., Int. Ed. 2016, 55, 11421–11425.

    Article  CAS  Google Scholar 

  22. Ecker, M.; Danda, V.; Shoffstall, A. J.; Mahmood, S. F.; Joshi-Imre, A.; Frewin, C. L.; Ware, T. H.; Capadona, J. R.; Pancrazio, J. J.; Voit, W. E. Sterilization of thiol-ene/acrylate based shape memory polymers for biomedical applications. Macromol. Mater. Eng. 2017, 302, 1600331.

    Article  Google Scholar 

  23. Xie, T. Recent advances in polymer shape memory. Polymer 2011, 52, 4985–5000.

    Article  CAS  Google Scholar 

  24. Chakma, P.; Konkolewicz, D. Dynamic covalent bonds in polymeric materials. Angew. Chem., Int. Ed. 2019, 58, 9682–9695.

    Article  CAS  Google Scholar 

  25. Li, T. T.; Yan, S. Z.; Gao, X. X.; Zhou, S.; Li, J.; Ma, X. D.; Yin, J.; Jiang, X. S. Photo-induced spatial gradient network for shape memory polymer with pattern-memorizing surface. Mater. Horiz. 2022, 9, 3078–3086.

    Article  CAS  Google Scholar 

  26. Wang, Y. Z.; Cheng, Z. J.; Liu, Z. G.; Kang, H. J.; Liu, Y. Y. Cellulose nanofibers/polyurethane shape memory composites with fast water-responsivity. J. Mater. Chem. B 2018, 6, 1668–1677.

    Article  CAS  Google Scholar 

  27. Testa, P.; Style, R. W.; Cui, J. Z.; Donnelly, C.; Borisova, E.; Derlet, P. M.; Dufresne, E. R.; Heyderman, L. J. Magnetically addressable shape-memory and stiffening in a composite elastomer. Adv. Mater. 2019, 31, 1900561.

    Article  Google Scholar 

  28. Shao, Y. L.; Zhao, J.; Fan, Y.; Wan, Z. P.; Lu, L. S.; Zhang, Z. H.; Ming, W. H.; Ren, L. Q. Shape memory superhydrophobic surface with switchable transition between “lotus effect” to “rose petal effect”. Chem. Eng. J. 2020, 382, 122989.

    Article  CAS  Google Scholar 

  29. Liu, Y. J.; Du, H. Y.; Liu, L. W.; Leng, J. S. Shape memory polymers and their composites in aerospace applications: A review. Smart Mater. Struct. 2014, 23, 023001.

    Article  CAS  Google Scholar 

  30. Li, Y. F.; Wang, R. J.; Jiao, S. Z.; Lai, H.; Liu, Y. Y.; Cheng, Z. J. Beetle-inspired oil-loaded shape memory micro-arrays with switchable adhesion to both solid and liquid. Chem. Eng. J. 2023, 461, 141927.

    Article  CAS  Google Scholar 

  31. Peterson, G. I.; Dobrynin, A. V.; Becker, M. L. Biodegradable shape memory polymers in medicine. Adv. Healthc. Mater. 2017, 6, 1700694.

    Article  Google Scholar 

  32. Zadan, M.; Patel, D. K.; Sabelhaus, A. P.; Liao, J. H.; Wertz, A.; Yao, L. N.; Majidi, C. Liquid crystal elastomer with integrated soft thermoelectrics for shape memory actuation and energy harvesting. Adv. Mater. 2022, 34, 2200857.

    Article  CAS  Google Scholar 

  33. Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 2016, 28, 4449–4454.

    Article  CAS  Google Scholar 

  34. Quan, M. H.; Yang, B. W.; Wang, J. X.; Yu, H. F.; Cao, X. Y. Simultaneous microscopic structure characteristics of shape-memory effects of thermo-responsive poly(vinylidene fluoride-co-hexafluoropropylene) inverse opals. ACS Appl. Mater. Interfaces 2018, 10, 4243–4249.

    Article  CAS  Google Scholar 

  35. Fang, Y.; Ni, Y. L.; Leo, S. Y.; Taylor, C.; Basile, V.; Jiang, P. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers. Nat. Commun. 2015, 6, 7416.

    Article  CAS  Google Scholar 

  36. Peng, W. J.; Zhang, G. G.; Zhao, Q.; Xie, T. Autonomous off-equilibrium morphing pathways of a supramolecular shape-memory polymer. Adv. Mater. 2021, 33, 2102473.

    Article  CAS  Google Scholar 

  37. Xu, H. X.; Yu, C. J.; Wang, S. D.; Malyarchuk, V.; Xie, T.; Rogers, J. A. Deformable, programmable, and shape-memorizing micro-optics. Adv. Funct. Mater. 2013, 23, 3299–3306.

    Article  CAS  Google Scholar 

  38. Wang, W. T.; Zhou, Y. C.; Yang, L.; Yang, X. P.; Yao, Y. Y.; Meng, Y.; Tang, B. T. Stimulus-responsive photonic crystals for advanced security. Adv. Funct. Mater. 2022, 32, 2204744.

    Article  CAS  Google Scholar 

  39. Cai, Z. Y.; Li, Z. W.; Ravaine, S.; He, M. X.; Song, Y. L.; Yin, Y. D.; Zheng, H. B.; Teng, J. H.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951.

    Article  CAS  Google Scholar 

  40. Wu, S. L.; Xia, H. B.; Xu, J. H.; Sun, X. Q.; Liu, X. G. Manipulating luminescence of light emitters by photonic crystals. Adv. Mater. 2018, 30, 1803362.

    Article  Google Scholar 

  41. Fang, Y.; Ni, Y. L.; Leo, S. Y.; Wang, B. C.; Basile, V.; Taylor, C.; Jiang, P. Direct writing of three-dimensional macroporous photonic crystals on pressure-responsive shape memory polymers. ACS Appl. Mater. Interfaces 2015, 7, 23650–23659.

    Article  CAS  Google Scholar 

  42. Wang, Y. L.; Zhao, Q. L.; Du, X. M. Inkless multi-color writing and copying of laser-programmable photonic crystals. Mater. Horiz. 2020, 7, 1341–1347.

    Article  CAS  Google Scholar 

  43. Xie, Y.; Meng, Y.; Wang, W. X.; Zhang, E.; Leng, J. S.; Pei, Q. B. Bistable and reconfigurable photonic crystals-electroactive shape memory polymer nanocomposite for ink-free rewritable paper. Adv. Funct. Mater. 2018, 28, 1802430.

    Article  Google Scholar 

  44. Wu, P.; Shen, X. Q.; Schäfer, C. G.; Pan, J.; Guo, J.; Wang, C. C. Mechanochromic and thermochromic shape memory photonic crystal films based on core/shell nanoparticles for smart monitoring. Nanoscale 2019, 11, 20015–20023.

    Article  CAS  Google Scholar 

  45. Wang, Y.; Zhang, Z. H.; Chen, H. X.; Zhang, H.; Zhang, H.; Zhao, Y. J. Bio-inspired shape-memory structural color hydrogel film. Sci. Bull. 2022, 67, 512–519.

    Article  CAS  Google Scholar 

  46. Qi, Y.; Yang, H.; Zhang, S. F. Bubble evolution and manipulation revealed by reconfigurable shape-memory photonic crystals with tunable wettability. Chem. Eng. J. 2022, 428, 130859.

    Article  CAS  Google Scholar 

  47. Qi, Y.; Niu, W. B.; Zhang, S. F.; Wu, S. L.; Chu, L.; Ma, W.; Tang, B. T. Encoding and decoding of invisible complex information in a dual-response bilayer photonic crystal with tunable wettability. Adv. Funct. Mater. 2019, 29, 1906799.

    Article  CAS  Google Scholar 

  48. Leo, S. Y.; Zhang, W.; Zhang, Y. F.; Ni, Y. L.; Jiang, H.; Jones, C.; Jiang, P.; Basile, V.; Taylor, C. Chromogenic photonic crystal sensors enabled by multistimuli-responsive shape memory polymers. Small 2018, 14, 1703515.

    Article  Google Scholar 

  49. Yi, H.; Lee, S. H.; Ko, H.; Lee, D.; Bae, W. G.; Kim, T. I.; Hwang, D. S.; Jeong, H. E. Ultra-adaptable and wearable photonic skin based on a shape-memory, responsive cellulose derivative. Adv. Funct. Mater. 2019, 29, 1902720.

    Article  Google Scholar 

  50. Chen, X. D.; Han, G. Q.; Ren, P.; Lyu, Q. Q.; Li, M. M.; Zhang, L. B.; Zhu, J. T. Shape memory photonic gels enable reversible regulation of photoluminescence: Towards multiple anti-counterfeiting. Chem. Eng. J. 2022, 446, 136879.

    Article  CAS  Google Scholar 

  51. Hsieh, C. H.; Lu, Y. C.; Yang, H. T. Self-assembled mechanochromic shape memory photonic crystals by doctor blade coating. ACS Appl. Mater. Interfaces 2020, 12, 36478–36484.

    Article  CAS  Google Scholar 

  52. Kim, J. H.; Lee, G. H.; Kim, J. B.; Kim, S. H. Macroporous hydrogels for fast and reversible switching between transparent and structurally colored states. Adv. Funct. Mater. 2020, 30, 2001318.

    Article  CAS  Google Scholar 

  53. Fang, Y.; Ni, Y. L.; Choi, B.; Leo, S. Y.; Gao, J.; Ge, B.; Taylor, C.; Basile, V.; Jiang, P. Chromogenic photonic crystals enabled by novel vapor-responsive shape-memory polymers. Adv. Mater. 2015, 27, 3696–3704.

    Article  CAS  Google Scholar 

  54. Fang, Y.; Leo, S. Y.; Ni, Y. L.; Wang, J. Y.; Wang, B. C.; Yu, L.; Dong, Z.; Dai, Y. Q.; Basile, V.; Taylor, C. et al. Reconfigurable photonic crystals enabled by multistimuli-responsive shape memory polymers possessing room temperature shape processability. ACS Appl. Mater. Interfaces 2017, 9, 5457–5467.

    Article  CAS  Google Scholar 

  55. Zare, M.; Prabhakaran, M. P.; Parvin, N.; Ramakrishna, S. Thermally-induced two-way shape memory polymers: Mechanisms, structures, and applications. Chem. Eng. J. 2019, 374, 706–720.

    Article  CAS  Google Scholar 

  56. Fan, G. L.; Wang, S. W.; Jiang, J. Q.; Liu, Z. T.; Liu, Z. W.; Li, G. Rubber-like composites with tunable thermal- and photo-responsive shape memory properties. Chem. Eng. J. 2022, 447, 137534.

    Article  CAS  Google Scholar 

  57. Elliott, L. V.; Salzman, E. E.; Greer, J. R. Stimuli responsive shape memory microarchitectures. Adv. Funct. Mater. 2021, 31, 2008380.

    Article  CAS  Google Scholar 

  58. Qi, Y.; Zhang, S. F.; Lu, A. H. Responsive structural colors derived from geometrical deformation of synthetic nanomaterials. Small Struct. 2022, 3, 2200101.

    Article  CAS  Google Scholar 

  59. Wu, P. P.; Guo, J. S.; Jiang, K. J.; Wang, J. X.; Jiang, L. Direct water-writing/electroerasing pattern on PEDOT inverse opals. Adv. Funct. Mater. 2019, 29, 1808473.

    Article  Google Scholar 

  60. Shang, Y. X.; Chen, Z. Y.; Fu, F. F.; Sun, L. Y.; Shao, C. M.; Jin, W.; Liu, H.; Zhao, Y. J. Cardiomyocyte-driven structural color actuation in anisotropic inverse opals. ACS Nano 2019, 13, 796–802.

    Article  CAS  Google Scholar 

  61. Zhou, C. T.; Qi, Y.; Zhang, S. F.; Niu, W. B.; Wu, S. L.; Ma, W.; Tang, B. T. Fast water-response double-inverse opal films with brilliant structural color. Chem. Eng. J. 2021, 426, 131213.

    Article  CAS  Google Scholar 

  62. Wang, W.; Shen, D. F.; Li, X.; Yao, Y.; Lin, J. P.; Wang, A.; Yu, J.; Wang, Z. L.; Hong, S. W.; Lin, Z. Q. et al. Light-driven shape-memory porous films with precisely controlled dimensions. Angew. Chem., Int. Ed. 2018, 57, 2139–2143.

    Article  Google Scholar 

  63. Hong, W.; Yuan, Z. K.; Chen, X. D. Structural color materials for optical anticounterfeiting. Small 2020, 16, 1907626.

    Article  CAS  Google Scholar 

  64. Hu, J. L.; Chen, S. J. A review of actively moving polymers in textile applications. J. Mater. Chem. 2010, 20, 3346–3355.

    Article  CAS  Google Scholar 

  65. Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464, 267–270.

    Article  CAS  Google Scholar 

  66. Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem., Int. Ed. 2002, 41, 2034–2057.

    Article  CAS  Google Scholar 

  67. Xia, Y. L.; He, Y.; Zhang, F. H.; Liu, Y. J.; Leng, J. S. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv. Mater. 2021, 33, 2000713.

    Article  CAS  Google Scholar 

  68. Xie, H.; Yang, K. K.; Wang, Y. Z. Photo-cross-linking: A powerful and versatile strategy to develop shape-memory polymers. Prog. Polym. Sci. 2019, 95, 32–64.

    Article  CAS  Google Scholar 

  69. Du, W. N.; Jin, Y.; Shi, L. J.; Shen, Y. C.; Lai, S. Q.; Zhou, Y. T. NIR-light-induced thermoset shape memory polyurethane composites with self-healing and recyclable functionalities. Compos. Part B: Eng. 2020, 195, 108092.

    Article  CAS  Google Scholar 

  70. Neffe, A. T.; Löwenberg, C.; Julich-Gruner, K. K.; Behl, M.; Lendlein, A. Thermally-induced shape-memory behavior of degradable gelatin-based networks. Int. J. Mol. Sci. 2021, 22, 5892.

    Article  CAS  Google Scholar 

  71. Yan, N. N.; Zheng, Z. Y.; Liu, Y. L.; Jiang, X. Z.; Wu, J. M.; Feng, M.; Xu, L.; Guan, Q. B.; Li, H. T. Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials. Nano Res. 2022, 15, 1383–1392.

    Article  CAS  Google Scholar 

  72. Li, Y. Y.; Wang, D. Q.; Wen, J.; Liu, J. M.; Zhang, D. Y.; Li, J. S.; Chu, H. T. Ultra-stretchable, variable modulus, shape memory multi-purpose low hysteresis hydrogel derived from solvent-induced dynamic micelle sea-island structure. Adv. Funct. Mater. 2021, 31, 2011259.

    Article  CAS  Google Scholar 

  73. Han, X. J.; Dong, Z. Q.; Fan, M. M.; Liu, Y.; Li, J. H.; Wang, Y. F.; Yuan, Q. J.; Li, B. J.; Zhang, S. pH-induced shape-memory polymers. Macromol. Rapid Commun. 2012, 33, 1055–1060.

    Article  CAS  Google Scholar 

  74. Fang, Y.; Leo, S. Y.; Ni, Y. L.; Yu, L.; Qi, P. X.; Wang, B. C.; Basile, V.; Taylor, C.; Jiang, P. Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers. Adv. Opt. Mater. 2015, 3, 1509–1516.

    Article  CAS  Google Scholar 

  75. Guo, H. S.; Puttreddy, R.; Salminen, T.; Lends, A.; Jaudzems, K.; Zeng, H.; Priimagi, A. Halogen-bonded shape memory polymers. Nat. Commun. 2022, 13, 7436.

    Article  CAS  Google Scholar 

  76. Gao, H.; Li, J. R.; Zhang, F. H.; Liu, Y. J.; Leng, J. S. The research status and challenges of shape memory polymer-based flexible electronics. Mater. Horiz. 2019, 6, 931–944.

    Article  CAS  Google Scholar 

  77. Delaey, J.; Dubruel, P.; Van Vlierberghe, S. Shape-memory polymers for biomedical applications. Adv. Funct. Mater. 2020, 30, 1909047.

    Article  CAS  Google Scholar 

  78. Kou, D. H.; Zhang, S. F.; Lutkenhaus, J. L.; Wang, L.; Tang, B. T.; Ma, W. Porous organic/inorganic hybrid one-dimensional photonic crystals for rapid visual detection of organic solvents. J. Mater. Chem. C 2018, 6, 2704–2711.

    Article  CAS  Google Scholar 

  79. Zhang, J. T.; Wang, L. L.; Luo, J.; Tikhonov, A.; Kornienko, N.; Asher, S. A. 2-D array photonic crystal sensing motif. J. Am. Chem. Soc. 2011, 133, 9152–9155.

    Article  CAS  Google Scholar 

  80. Li, C.; Zhao, M. X.; Zhou, X.; Li, H. Z.; Wang, Y.; Hu, X. T.; Li, M. Z.; Shi, L.; Song, Y. L. Janus structural color from a 2D photonic crystal hybrid with a Fabry–Perot cavity. Adv. Opt. Mater. 2018, 6, 1800651.

    Article  Google Scholar 

  81. Armstrong, E.; O’Dwyer, C. Artificial opal photonic crystals and inverse opal structures-fundamentals and applications from optics to energy storage. J. Mater. Chem. C 2015, 3, 6109–6143.

    Article  CAS  Google Scholar 

  82. Cai, Z. Y.; Smith, N. L.; Zhang, J. T.; Asher, S. A. Two-dimensional photonic crystal chemical and biomolecular sensors. Anal. Chem. 2015, 87, 5013–5025.

    Article  CAS  Google Scholar 

  83. Ge, J. P.; Yin, Y. D. Responsive photonic crystals. Angew. Chem., Int. Ed. 2011, 50, 1492–1522.

    Article  CAS  Google Scholar 

  84. Aguirre, C. I.; Reguera, E.; Stein, A. Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 2010, 20, 2565–2578.

    Article  CAS  Google Scholar 

  85. Niu, W. B.; Cao, X. F.; Wang, Y. P.; Yao, B. W.; Zhao, Y. S.; Cheng, J.; Wu, S. L.; Zhang, S. F.; He, X. M. Photonic vitrimer elastomer with self-healing, high toughness, mechanochromism, and excellent durability based on dynamic covalent bond. Adv. Funct. Mater. 2021, 31, 2009017.

    Article  CAS  Google Scholar 

  86. Niu, W. B.; Zhao, K.; Qu, L. C.; Zhang, S. F. Rewritable and highly stable photonic patterns for optical storage and display enabled by direct-pressure-programmed shape memory photonic crystals. J. Mater. Chem. C 2018, 6, 8385–8394.

    Article  CAS  Google Scholar 

  87. Wang, C. Y.; Li, F. Y.; Bi, Y. H.; Guo, W. W. Reversible modulation of 2D photonic crystals with a responsive shape-memory DNA hydrogel film. Adv. Mater. Interfaces 2019, 6, 1900556.

    Article  CAS  Google Scholar 

  88. Cheng, J.; Zhang, L. L.; Zhao, K.; Wang, Y. P.; Cao, X. F.; Zhang, S. F.; Niu, W. B. Flexible multifunctional photonic crystal fibers with shape memory capability for optical waveguides and electrical sensors. Ind. Eng. Chem. Res. 2021, 60, 8442–8450.

    Article  CAS  Google Scholar 

  89. Guo, T. T.; Yu, X. L.; Zhao, Y. H.; Yuan, X. Y.; Li, J. Y.; Ren, L. X. Structure memory photonic crystals prepared by hierarchical self-assembly of semicrystalline bottlebrush block copolymers. Macromolecules 2020, 53, 3602–3610.

    Article  CAS  Google Scholar 

  90. Luo, W.; Cui, Q.; Fang, K.; Chen, K.; Ma, H. R.; Guan, J. G. Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution. Nano Lett. 2020, 20, 803–811.

    Article  CAS  Google Scholar 

  91. Zhang, Y. G.; Qi, Y.; Wang, R. Z.; Cao, T.; Ma, W.; Zhang, S. F. Nonintrusively adjusting structural colors of sealed two-dimensional photonic crystals: Immediate transformation between transparency and intense iridescence and their applications. ACS Appl. Mater. Interfaces 2021, 13, 13861–13871.

    Article  CAS  Google Scholar 

  92. Ji, C. P.; Chen, M.; Wu, L. M. Patternable and rewritable retroreflective structural color shape memory polymers. Adv. Opt. Mater. 2021, 9, 2100739.

    Article  CAS  Google Scholar 

  93. Li, J. Q.; Han, X.; Li, W.; Yang, L.; Li, X.; Wang, L. Q. Nature-inspired reentrant surfaces. Prog. Mater. Sci. 2023, 133, 101064.

    Article  Google Scholar 

  94. Cai, Z. Y.; Luck, L. A.; Punihaole, D.; Madura, J. D.; Asher, S. A. Photonic crystal protein hydrogel sensor materials enabled by conformationally induced volume phase transition. Chem. Sci. 2016, 7, 4557–4562.

    Article  CAS  Google Scholar 

  95. Cai, Z. Y.; Sasmal, A.; Liu, X. Y.; Asher, S. A. Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection. ACS Sens. 2017, 2, 1474–1481.

    Article  CAS  Google Scholar 

  96. Cai, Z. Y.; Kwak, D. H.; Punihaole, D.; Hong, Z. M.; Velankar, S. S.; Liu, X. Y.; Asher, S. A. A photonic crystal protein hydrogel sensor for Candida albicans. Angew. Chem., Int. Ed. 2015, 54, 13036–13040.

    Article  CAS  Google Scholar 

  97. Espinha, A.; Serrano, M. C.; Blanco, Á.; López, C. Thermoresponsive shape-memory photonic nanostructures. Adv. Opt. Mater. 2014, 2, 516–521.

    Article  CAS  Google Scholar 

  98. Zhang, Z. H.; Chen, Z. Y.; Sun, L. Y.; Zhang, X. X.; Zhao, Y. J. Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res. 2019, 12, 1579–1584.

    Article  CAS  Google Scholar 

  99. Xiao, J. J.; Lin, S. X.; Cai, Z. H.; Muhmood, T.; Hu, X. B. Ultrahigh conductive 3D aluminum photonic crystal as sulfur immobilizer for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 4776–4782.

    Article  CAS  Google Scholar 

  100. Zhang, J. H.; Zhang, Y.; Wang, Y. C.; Rencus-Lazar, S.; Mei, D. Q.; Gazit, E.; Tao, K. Bio-organic adaptive photonic crystals enable supramolecular solvatochromism. Nano Res., in press, https://doi.org/10.1007/s12274-022-5331-1.

  101. Shang, L. R.; Zhang, W. X.; Xu, K.; Zhao, Y. J. Bio-inspired intelligent structural color materials. Mater. Horiz. 2019, 6, 945–958.

    Article  CAS  Google Scholar 

  102. Leverant, C. J.; Leo, S. Y.; Cordoba, M. A.; Zhang, Y. F.; Charpota, N.; Taylor, C.; Jiang, P. Reconfigurable anticounterfeiting coatings enabled by macroporous shape memory polymers. ACS Appl. Polym. Mater. 2019, 1, 36–46.

    Article  CAS  Google Scholar 

  103. Wang, Y.; Aurelio, D.; Li, W. Y.; Tseng, P.; Zheng, Z. Z.; Li, M.; Kaplan, D. L.; Liscidini, M.; Omenetto, F. G. Modulation of multiscale 3D lattices through conformational control: Painting silk inverse opals with water and light. Adv. Mater. 2017, 29, 1702769.

    Article  Google Scholar 

  104. Liu, C. H.; Ding, H. B.; Wu, Z. Q.; Gao, B. B.; Fu, F. F.; Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Tunable structural color surfaces with visually self-reporting wettability. Adv. Funct. Mater. 2016, 26, 7937–7942.

    Article  CAS  Google Scholar 

  105. Couturier, J. P.; Sütterlin, M.; Laschewsky, A.; Hettrich, C.; Wischerhoff, E. Responsive inverse opal hydrogels for the sensing of macromolecules. Angew. Chem., Int. Ed. 2015, 54, 6641–6644.

    Article  CAS  Google Scholar 

  106. Yu, S. Z.; Niu, W. B.; Wu, S. L.; Ma, W.; Zhang, S. F. Robust and flexible thermal-plasticizing 3D shaped composite films with invariable and brilliant structural color. J. Mater. Chem. C 2018, 6, 12814–12821.

    Article  CAS  Google Scholar 

  107. Chang, P. N.; Niu, W. B.; Qu, L. C.; Zhang, S. F. Two-way rewritable and stable photonic patterns enabled by near-infrared laser-responsive shape memory photonic crystals. J. Mater. Chem. C 2019, 7, 1896–1903.

    Article  CAS  Google Scholar 

  108. Zhou, C. T.; Qi, Y.; Zhang, S. F.; Niu, W. B.; Wu, S. L.; Ma, W.; Tang, B. T. Water rewriteable double-inverse opal photonic crystal films with ultrafast response time and robust writing capability. Chem. Eng. J. 2022, 439, 135761.

    Article  CAS  Google Scholar 

  109. Du, X. M.; Li, T. Y.; Li, L. J.; Zhang, Z. C.; Wu, T. Z. Water as a colorful ink: Transparent, rewritable photonic coatings based on colloidal crystals embedded in chitosan hydrogel. J. Mater. Chem. C 2015, 3, 3542–3546.

    Article  CAS  Google Scholar 

  110. Yu, S. Z.; Cao, X.; Niu, W. B.; Wu, S. L.; Ma, W.; Zhang, S. F. Large-area and water rewriteable photonic crystal films obtained by the thermal assisted air-liquid interface self assembly. ACS Appl. Mater. Interfaces 2019, 11, 22777–22785.

    Article  CAS  Google Scholar 

  111. Liao, J. L.; Zhu, C.; Gao, B. B.; Zhao, Z.; Liu, X. J.; Tian, L.; Zeng, Y.; Zhou, X. L.; Xie, Z. Y.; Gu, Z. Z. Multiresponsive elastic colloidal crystals for reversible structural color patterns. Adv. Funct. Mater. 2019, 29, 1902954.

    Article  Google Scholar 

  112. Leverant, C. J.; Zhang, Y. F.; Cordoba, M. A.; Leo, S. Y.; Charpota, N.; Taylor, C.; Jiang, P. Macroporous superhydrophobic coatings with switchable wettability enabled by smart shape memory polymers. Adv. Mater. Interfaces 2021, 8, 2002111.

    Article  CAS  Google Scholar 

  113. Niu, W. B.; Qu, L. C.; Lyv, R. W.; Zhang, S. F. Reconfigurable photonic crystals with optical bistability enabled by “cold” programming and thermo-recoverable shape memory polymers. RSC Adv. 2017, 7, 22461–22467.

    Article  CAS  Google Scholar 

  114. Liu, W. K.; Wang, A.; Yang, R. B.; Wu, H. C.; Shao, S. R.; Chen, J. L.; Ma, Y.; Li, Z.; Wang, Y. C.; He, X. L. et al. Water-triggered stiffening of shape-memory polyurethanes composed of hard backbone dangling PEG soft segments. Adv. Mater. 2022, 34, 2201914.

    Article  CAS  Google Scholar 

  115. Sun, Y. D.; Wang, Y. P.; Liu, Y.; Wu, S. L.; Zhang, S. F.; Niu, W. B. Biomimetic chromotropic photonic-ionic skin with robust resilience, adhesion, and stability. Adv. Funct. Mater. 2022, 32, 2204467.

    Article  CAS  Google Scholar 

  116. Wang, X. Y.; Qi, Y.; Zhang, S. F.; Niu, W. B.; Ma, W.; Wu, S. L.; Tang, B. T. Mechanical nondiscoloring and antistretching photonic crystal films based on Zn2+ coordination and hydroxypropyl methylcellulose. J. Appl. Polym. Sci. 2021, 138, 49916.

    Article  CAS  Google Scholar 

  117. Guan, Y.; Li, H. Y.; Zhang, S. F.; Niu, W. B. Mechanochromic photonic vitrimer thermal management device based on dynamic covalent bond. Adv. Funct. Mater. 2023, 33}, 2215055.

    Article  CAS  Google Scholar 

  118. Han, P.; He, X. Y.; Zhang, Y. X.; Zhou, H. Y.; Liu, M. J.; Wu, N.; Jiang, J. K.; Wei, Y.; Yao, X.; Zhou, J. M. et al. Cascade-microphase-separation-induced hierarchical photonic structures in supramolecular organogel for deformation-insensitive structural colors. Adv. Opt. Mater. 2019, 7, 1801749.

    Article  Google Scholar 

  119. Peng, L.; Hou, L.; Wu, P. Y. Synergetic lithium and hydrogen bonds endow liquid-free photonic ionic elastomer with mechanical robustness and electrical/optical dual-output. Adv. Mater. 2023, 35, 2211342.

    Article  CAS  Google Scholar 

  120. Lee, G. H.; Choi, T. M.; Kim, B.; Han, S. H.; Lee, J. M.; Kim, S. H. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 2017, 11, 11350–11357.

    Article  CAS  Google Scholar 

  121. Phillips, K. R.; Vogel, N.; Burgess, I. B.; Perry, C. C.; Aizenberg, J. Directional wetting in anisotropic inverse opals. Langmuir 2014, 30, 7615–7620.

    Article  CAS  Google Scholar 

  122. Phillips, K. R.; Vogel, N.; Hu, Y. H.; Kolle, M.; Perry, C. C.; Aizenberg, J. Tunable anisotropy in inverse opals and emerging optical properties. Chem. Mater. 2014, 26, 1622–1628.

    Article  CAS  Google Scholar 

  123. Leo, S. Y.; Ni, Y. L.; Xu, C.; Zhang, Y. F.; Dai, Y. Q.; Qi, P. X.; Xie, A. T.; Basile, V.; Taylor, C.; Jiang, P. Programmable macroporous photonic crystals enabled by swelling-induced all-room-temperature shape memory effects. Adv. Funct. Mater. 2017, 27, 1703522.

    Article  Google Scholar 

  124. Ni, Y. L.; Zhang, Y. F.; Leo, S. Y.; Fang, Y.; Zhao, M. Z.; Yu, L.; Schulze, K. D.; Sawyer, W. G.; Angelini, T. E.; Jiang, P. et al. Unconventional shape memory mechanisms of nanoporous polymer photonic crystals: Implications for nano-optical coatings and devices. ACS Appl. Nano Mater. 2018, 1, 6081–6090.

    Article  CAS  Google Scholar 

  125. Salvekar, A. V.; Huang, W. M.; Xiao, R.; Wong, Y. S.; Venkatraman, S. S.; Tay, K. H.; Shen, Z. X. Water-responsive shape recovery induced buckling in biodegradable photo-cross-linked poly(ethylene glycol) (PEG) hydrogel. Acc. Chem. Res. 2017, 50, 141–150.

    Article  CAS  Google Scholar 

  126. Quitmann, D.; Gushterov, N.; Sadowski, G.; Katzenberg, F.; Tiller, J. C. Environmental memory of polymer networks under stress. Adv. Mater. 2014, 26, 3441–3444.

    Article  CAS  Google Scholar 

  127. Löwenberg, C.; Balk, M.; Wischke, C.; Behl, M.; Lendlein, A. Shape-memory hydrogels: Evolution of structural principles to enable shape switching of hydrophilic polymer networks. Acc. Chem. Res. 2017, 50, 723–732.

    Article  Google Scholar 

  128. Qi, Y.; Kou, D. H.; Sun, Y. D.; Hu, T.; Yuan, H.; Zhou, C. T.; Li, C.; Lu, A. H.; Wu, S. L.; Zhang, S. F. Portable colorimetric photonic indicator for ethanol concentration sensing. Chem. Eng. J. 2023, 457, 141184.

    Article  CAS  Google Scholar 

  129. Qi, Y.; Song, L. J.; Zhou, C. T.; Zhang, S. F. Hydration activates dual-confined shape-memory effects of cold-reprogrammable photonic crystals. Adv. Mater. 2023, 35, 2210753.

    Article  CAS  Google Scholar 

  130. Sun, Y.; Le, X. X.; Zhou, S. Y.; Chen, T. Recent progress in smart polymeric gel-based information storage for anti-counterfeiting. Adv. Mater. 2022, 34, 2201262.

    Article  CAS  Google Scholar 

  131. Xuan, Z. Y.; Li, J. Y.; Liu, Q. Q.; Yi, F.; Wang, S. W.; Lu, W. Artificial structural colors and applications. Innovation 2021, 2, 100081.

    CAS  Google Scholar 

  132. Lin, R. C.; Qi, Y.; Kou, D. H.; Ma, W.; Zhang, S. F. Bio-inspired wrinkled photonic elastomer with superior controllable and mechanically stable structure for multi-mode color display. Adv. Funct. Mater. 2022, 32, 2207691.

    Article  CAS  Google Scholar 

  133. Li, L. J.; Chen, Z. Y.; Shao, C. M.; Sun, L. Y.; Sun, L. Y.; Zhao, Y. J. Graphene hybrid anisotropic structural color film for cardiomyocytes’ monitoring. Adv. Funct. Mater. 2020, 30, 1906353.

    Article  CAS  Google Scholar 

  134. Li, Z. W.; Liu, Y.; Marin, M.; Yin, Y. D. Thickness-dependent wrinkling of PDMS films for programmable mechanochromic responses. Nano Res. 2020, 13, 1882–1888.

    Article  Google Scholar 

  135. Wu, K.; Zhu, T.; Zhu, L. L.; Sun, Y.; Chen, K.; Chen, J. R.; Yuan, H. Z.; Wang, Y. Q.; Zhang, J. Y.; Liu, G. et al. Reversible mechanochromisms via manipulating surface wrinkling. Nano Lett. 2022, 22, 2261–2269.

    Article  CAS  Google Scholar 

  136. Yang, Y.; Chen, Y.; Hou, Z. Y.; Li, F.; Xu, M. J.; Liu, Y. Y.; Tian, D.; Zhang, L. B.; Xu, J. P.; Zhu, J. T. Responsive photonic crystal microcapsules of block copolymers with enhanced monochromaticity. ACS Nano 2020, 14, 16057–16064.

    Article  CAS  Google Scholar 

  137. Kim, Y. G.; Park, S.; Choi, Y. H.; Han, S. H.; Kim, S. H. Elastic photonic microcapsules containing colloidal crystallites as building blocks for macroscopic photonic surfaces. ACS Nano 2021, 15, 12438–12448.

    Article  CAS  Google Scholar 

  138. Zhao, T. H.; Jacucci, G.; Chen, X.; Song, D. P.; Vignolini, S.; Parker, R. M. Angular-independent photonic pigments via the controlled micellization of amphiphilic bottlebrush block copolymers. Adv. Mater. 2020, 32, 2002681.

    Article  CAS  Google Scholar 

  139. Liu, Q. J.; Li, Y. L.; Xu, J. C.; Lu, H. F.; Li, Y. S.; Song, D. P. Self-assembled photonic microsensors with strong aggregation-induced emission for ultra-trace quantitative detection. ACS Nano 2021, 15, 5534–5544.

    Article  CAS  Google Scholar 

  140. Chu, G.; Qu, D.; Camposeo, A.; Pisignano, D.; Zussman, E. When nanocellulose meets diffraction grating: Freestanding photonic paper with programmable optical coupling. Mater. Horiz. 2020, 7, 511–519.

    Article  CAS  Google Scholar 

  141. Choi, J.; Hua, M. T.; Lee, S. Y.; Jo, W.; Lo, C. Y.; Kim, S. H.; Kim, H. T.; He, X. M. Hydrocipher: Bioinspired dynamic structural color-based cryptographic surface. Adv. Opt. Mater. 2020, 8, 1901259.

    Article  CAS  Google Scholar 

  142. Díaz-Marín, C. D.; Li, D.; Vázquez-Cosme, F. J.; Pajovic, S.; Cha, H.; Song, Y.; Kilpatrick, C.; Vaartstra, G.; Wilson, C. T.; Boriskina, S. et al. Capillary transfer of self-assembled colloidal crystals. Nano Lett. 2023, 23, 1888–1896.

    Article  Google Scholar 

  143. Lai, X. T.; Ren, Q.; Vogelbacher, F.; Sha, W. E. I.; Hou, X. Y.; Yao, X.; Song, Y. L.; Li, M. Z. Bioinspired quasi-3D multiplexed anti-counterfeit imaging via self-assembled and nanoimprinted photonic architectures. Adv. Mater. 2022, 34, 2107243.

    Article  CAS  Google Scholar 

  144. Qi, Y.; Chu, L.; Niu, W. B.; Tang, B. T.; Wu, S. L.; Ma, W.; Zhang, S. F. New encryption strategy of photonic crystals with bilayer inverse heterostructure guided from transparency response. Adv. Funct. Mater. 2019, 29, 1903743.

    Article  Google Scholar 

  145. Zhan, Y.; Wang, Y.; Cheng, Q. F.; Li, C.; Li, K. X.; Li, H. Z.; Peng, J. S.; Lu, B.; Wang, Y.; Song, Y. L. et al. A butterfly-inspired hierarchical light-trapping structure towards a high-performance polarization-sensitive perovskite photodetector. Angew. Chem., Int. Ed. 2019, 58, 16456–16462.

    Article  CAS  Google Scholar 

  146. Wang, Z. Z.; Meng, F. T.; Zhang, S. F.; Meng, Y.; Wu, S. L.; Tang, B. T. Robust, portable, and specific water-response silk film with noniridescent pattern encryption for information security. ACS Appl. Mater. Interfaces 2020, 12, 56413–56423.

    Article  CAS  Google Scholar 

  147. Wang, Z. Z.; Zhang, S. F.; Tang, B. T. Environmentally friendly optical multi-color rewritable paper based on inverse photonic glass. Dyes Pigments 2022, 206, 110589.

    Article  CAS  Google Scholar 

  148. Zhou, C. T.; Qi, Y.; Zhang, S. F.; Niu, W. B.; Wu, S. L.; Ma, W.; Tang, B. T. Lotus seedpod inspiration: Particle-nested doubleinverse opal films with fast and reversible structural color switching for information security. ACS Appl. Mater. Interfaces 2021, 13, 26384–26393.

    Article  CAS  Google Scholar 

  149. Liu, H.; Xu, C.; Xia, Q. D.; Ying, Y. B.; Li, Q.; Zhao, X. Y.; Zhang, Y. J.; Yang, S. K. Tailorable and angle-independent colors from synthetic brochosomes. ACS Nano 2023, 17, 2257–2265.

    Article  CAS  Google Scholar 

  150. Huang, W. P.; Qian, H. L.; Wang, J.; Ren, K. F.; Ji, J. Periodic stratified porous structures in dynamic polyelectrolyte films through standing-wave optical crosslinking for structural color. Adv. Sci. 2021, 8, 2100402.

    Article  CAS  Google Scholar 

  151. Aeby, S.; Aubry, G. J.; Muller, N.; Scheffold, F. Scattering from controlled defects in woodpile photonic crystals. Adv. Opt. Mater. 2021, 9, 2001699.

    Article  CAS  Google Scholar 

  152. Kou, D. H.; Lin, R. C.; Li, C.; Zhang, S. F.; Ma, W. Bioinspired bowl-array enabled angle-independent and fast responsive photonic colors for environmental sensing. Chem. Eng. J. 2022, 430, 132805.

    Article  CAS  Google Scholar 

  153. Chen, H.; Zhu, H.; Wang, Y. Q.; Liu, J. R.; Wang, Y.; Hu, X. H.; Solovev, A. A.; Huang, G. S.; Mei, Y. F. Structural coloration by internal reflection and interference in hydrogel microbubbles and their precursors. Adv. Opt. Mater. 2021, 9, 2100259.

    Article  CAS  Google Scholar 

  154. Song, L. J.; Qi, Y.; Zhang, S. F. Design and self-assembly of polyhedron particles to construct iridescent structural colors. ACS Macro Lett. 2022, 11, 1362–1365.

    Article  CAS  Google Scholar 

  155. Lee, H. J.; Park, S.; Kim, J. B.; Kim, S. H. Designing 3D polymeric structures through capillary wetting on colloidal monolayer. Adv. Funct. Mater. 2023, 33, 2208402.

    Article  CAS  Google Scholar 

  156. Siegwardt, L.; Gallei, M. Complex 3D-printed mechanochromic materials with iridescent structural colors based on core-shell particles. Adv. Funct. Mater. 2023, 33, 2213099.

    Article  CAS  Google Scholar 

  157. Qin, M.; Li, J. S.; Song, Y. L. Toward high sensitivity: Perspective on colorimetric photonic crystal sensors. Anal. Chem. 2022, 94, 9497–9507.

    Article  CAS  Google Scholar 

  158. Xiao, M.; Mao, J.; Kollosche, M.; Hwang, V.; Clarke, D. R.; Manoharan, V. N. Voltage-tunable elastomer composites that use shape instabilities for rapid structural color changes. Mater. Horiz. 2022, 9, 1954–1961.

    Article  CAS  Google Scholar 

  159. Wu, Y.; Sun, R. K.; Ren, J.; Zhang, S. F.; Wu, S. L. Bioinspired dynamic camouflage in programmable thermochromic-patterned photonic films for sophisticated anti-counterfeiting. Adv. Funct. Mater. 2023, 33, 2210047.

    Article  CAS  Google Scholar 

  160. Qi, Y.; Zhou, C. T.; Qiu, Y. S.; Cao, X. F.; Niu, W. B.; Wu, S. L.; Zheng, Y. G.; Ma, W.; Ye, H. F.; Zhang, S. F. Biomimetic Janus photonic soft actuator with structural color self-reporting. Mater. Horiz. 2022, 9, 1243–1252.

    Article  CAS  Google Scholar 

  161. Zhu, C. N.; Bai, T. W.; Wang, H.; Ling, J.; Huang, F. H.; Hong, W.; Zheng, Q.; Wu, Z. L. Dual-encryption in a shape-memory hydrogel with tunable fluorescence and reconfigurable architecture. Adv. Mater. 2021, 33, 2102023.

    Article  CAS  Google Scholar 

  162. Chen, H. X.; Bian, F. K.; Sun, L. Y.; Zhang, D. G.; Shang, L. R.; Zhao, Y. J. Hierarchically molecular imprinted porous particles for biomimetic kidney cleaning. Adv. Mater. 2020, 32, 2005394.

    Article  Google Scholar 

  163. Zhang, Y.; Zhang, L. D.; Zhang, C. Q.; Wang, J. X.; Liu, J. C.; Ye, C. Q.; Dong, Z. C.; Wu, L.; Song, Y. L. Continuous resin refilling and hydrogen bond synergistically assisted 3D structural color printing. Nat. Commun. 2022, 13, 7095.

    Article  CAS  Google Scholar 

  164. Wang, C.; Lin, X.; Schäfer, C. G.; Hirsemann, S.; Ge, J. P. Spray synthesis of photonic crystal based automotive coatings with bright and angular-dependent structural colors. Adv. Funct. Mater. 2021, 31, 2008601.

    Article  CAS  Google Scholar 

  165. Li, Y. C.; Fan, Q. S.; Wang, X. H.; Liu, G. J.; Chai, L. Q.; Zhou, L.; Shao, J. Z.; Yin, Y. D. Shear-induced assembly of liquid colloidal crystals for large-scale structural coloration of textiles. Adv. Funct. Mater. 2021, 31, 2010746.

    Article  CAS  Google Scholar 

  166. He, Y. Y.; Liu, L. Y.; Fu, Q. Q.; Ge, J. P. Precise assembly of highly crystalline colloidal photonic crystals inside the polyester yarns: A spray coating synthesis for breathable and durable fabrics with saturated structural colors. Adv. Funct. Mater. 2022, 32, 2200330.

    Article  CAS  Google Scholar 

  167. Iwata, R.; Zhang, L. N.; Wilke, K. L.; Gong, S.; He, M. F.; Gallant, B. M.; Wang, E. N. Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting. Joule 2021, 5, 887–900.

    Article  CAS  Google Scholar 

  168. Madanu, T. L.; Mouchet, S. R.; Deparis, O.; Liu, J.; Li, Y.; Su, B. L. Tuning and transferring slow photons from TiO2 photonic crystals to BiVO4 nanoparticles for unprecedented visible light photocatalysis. J. Colloid Interface Sci. 2023, 634, 290–299.

    Article  CAS  Google Scholar 

  169. Clough, J. M.; van der Gucht, J.; Kodger, T. E.; Sprakel, J. Cephalopod-inspired high dynamic range mechano-imaging in polymeric materials. Adv. Funct. Mater. 2020, 30, 2002716.

    Article  CAS  Google Scholar 

  170. Meng, F. T.; Ju, B. Z.; Wang, Z. Z.; Han, R. H.; Zhang, Y.; Zhang, S. F.; Wu, P.; Tang, B. T. Bioinspired polypeptide photonic films with tunable structural color. J. Am. Chem. Soc. 2022, 144, 7610–7615.

    Article  CAS  Google Scholar 

  171. Liu, J. C.; Wang, J. X.; Ikeda, T.; Jiang, L. Liquid-phase super photoactuator through the synergetic effects of a janus structure and solvent/thermal/photo responses. Adv. Funct. Mater. 2021, 31, 2105728.

    Article  CAS  Google Scholar 

  172. Zhang, Z. H.; Chen, Z. Y.; Shang, L. R.; Zhao, Y. J. Structural color materials from natural polymers. Adv. Mater. Technol. 2021, 6, 2100296.

    Article  CAS  Google Scholar 

  173. Xiong, R.; Wu, W. L.; Lu, C. H.; Cölfen, H. Bioinspired chiral template guided mineralization for biophotonic structural materials. Adv. Mater. 2022, 34, 2206509.

    Article  CAS  Google Scholar 

  174. Wu, P. P.; Wang, J. X.; Jiang, L. Bio-inspired photonic crystal patterns. Mater. Horiz. 2020, 7, 338–365.

    Article  CAS  Google Scholar 

  175. Wang, H.; Zhang, H.; Chen, Z. Y.; Zhao, Y. J.; Gu, Z. X.; Shang, L. R. Polymer-based responsive structural color materials. Prog. Mater. Sci. 2023, 135, 101091.

    Article  CAS  Google Scholar 

  176. Gur, D.; Palmer, B. A.; Weiner, S.; Addadi, L. Light manipulation by guanine crystals in organisms: Biogenic scatterers, mirrors, multilayer reflectors and photonic crystals. Adv. Funct. Mater. 2017, 27, 1603514.

    Article  Google Scholar 

  177. Xiong, R.; Luan, J. Y.; Kang, S.; Ye, C. H.; Singamaneni, S.; Tsukruk, V. V. Biopolymeric photonic structures: Design, fabrication, and emerging applications. Chem. Soc. Rev. 2020, 49, 983–1031.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program of the National Natural Science Foundation of China (Nos. 22238002 and 22208047), China Postdoctoral Science Foundation (No. 2022M720639), Dalian High-level Talents Innovation Support Project (No. 2019RD06), the Liaoning Revitalization Talent Program (No. 1801006), and Research and Innovation Team Project of Dalian University of Technology (No. DUT2022TB10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Zhang, S. Recent advances in multifunctional shape memory photonic crystals and practical applications. Nano Res. 17, 79–96 (2024). https://doi.org/10.1007/s12274-023-5801-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5801-0

Keywords

Navigation