Skip to main content
Log in

Temperature difference-enhanced salinity gradient energy conversion enabled by thermostable hydrogel membrane with anti-swelling property

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Coupling low-grade heat (LGH) with salinity gradient is an effective approach to increase the efficiency of the nanofluidic-membrane-based power generator. However, it is a challenge to fabricate membranes with high charge density that ensures ion permselectivity, while maintaining chemical and mechanical stability in this composite environment. Here, we develop a bis[2-(methacryloyloxy)ethyl] phosphate (BMAP) hydrogel membrane with good thermal stability and anti-swelling property through self-crosslinking of the selected monomer. By taking advantage of negative space charge and three-dimensional (3D) interconnected nanochannels, salinity gradient energy conversion efficiency is substantially enhanced by temperature difference. Theoretical and experimental results verify that LGH can largely weaken the concentration polarization, promoting transmembrane ion transport. As a result, such a hydrogel membrane delivers high-performance energy conversion with a power density of 11.53 W·m−2 under a negative temperature difference (NTD), showing a 193% increase compared with that without NTD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jarvis, A. J.; Leedal, D. T.; Hewitt, C. N. Climate-society feedbacks and the avoidance of dangerous climate change. Nat. Climate Change 2012, 2, 668–671.

    CAS  Google Scholar 

  2. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  3. Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.

    CAS  Google Scholar 

  4. Siria, A.; Bocquet, M. L.; Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 2017, 1, 0091.

    CAS  Google Scholar 

  5. Pattle, R. E. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature 1954, 174, 660.

    CAS  Google Scholar 

  6. Yang, J. L.; Tu, B.; Zhang, G. J.; Liu, P. C.; Hu, K.; Wang, J. R.; Yan, Z.; Huang, Z. W.; Fang, M. N.; Hou, J. J. et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 2022, 17, 622–628.

    CAS  Google Scholar 

  7. Hao, J. R.; Bao, B.; Zhou, J. J.; Cui, Y. S.; Chen, X. C.; Zhou, J. L.; Zhou, Y. H.; Jiang, L. A euryhaline-fish-inspired salinity self-adaptive nanofluidic diode leads to high-performance blue energy harvesters. Adv. Mater. 2022, 34, 2203109.

    CAS  Google Scholar 

  8. Zhang, Z.; Bhauriyal, P.; Sahabudeen, H.; Wang, Z. Y.; Liu, X. H.; Hambsch, M.; Mannsfeld, S. C. B.; Dong, R. H.; Heine, T.; Feng, X. L. Cation-selective two-dimensional polyimine membranes for highperformance osmotic energy conversion. Nat. Commun. 2022, 13, 3935.

    CAS  Google Scholar 

  9. Chen, C.; Liu, D.; He, L.; Qin, S.; Wang, J. M.; Razal, J. M.; Kotov, N. A.; Lei, W. W. Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 2020, 4, 247–261.

    CAS  Google Scholar 

  10. Man, Z. M.; Safaei, J.; Zhang, Z.; Wang, Y. Z.; Zhou, D.; Li, P.; Zhang, X. G.; Jiang, L.; Wang, G. X. Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation. J. Am. Chem. Soc. 2021, 143, 16206–16216.

    CAS  Google Scholar 

  11. Bian, G. S.; Pan, N.; Luan, Z. H.; Sui, X.; Fan, W. X.; Xia, Y. Z.; Sui, K. Y.; Jiang, L. Anti-swelling gradient polyelectrolyte hydrogel membranes as high-performance osmotic energy generators. Angew. Chem., Int. Ed. 2021, 60, 20294–20300.

    CAS  Google Scholar 

  12. Zhou, S. Y.; Hu, Y. H.; Xin, W. W.; Fu, L.; Lin, X. B.; Yang, L. S.; Hou, S. H.; Kong, X. Y.; Jiang, L.; Wen, L. P. Surfactant-assisted sulfonated covalent organic nanosheets: Extrinsic charge for improved ion transport and salinity-gradient energy harvesting. Adv. Mater. 2023, 35, 2208640.

    CAS  Google Scholar 

  13. Gray, G. T.; McCutcheon, J. R.; Elimelech, M. Internal concentration polarization in forward osmosis: Role of membrane orientation. Desalination 2006, 197, 1–8.

    CAS  Google Scholar 

  14. Cao, L. X.; Xiao, F. L.; Feng, Y. P.; Zhu, W. W.; Geng, W. X.; Yang, J. L.; Zhang, X. P.; Li, N.; Guo, W.; Jiang, L. Anomalous channel-length dependence in nanofluidic osmotic energy conversion. Adv. Funct. Mater. 2017, 27, 1604302.

    Google Scholar 

  15. Lin, T. W.; Hsu, J. P. Pressure-driven energy conversion of conical nanochannels: Anomalous dependence of power generated and efficiency on pH. J. Colloid Interface Sci. 2020, 564, 491–498.

    CAS  Google Scholar 

  16. Zhu, C. J.; Zuo, X. H.; Xian, W. P.; Guo, Q.; Meng, Q. W.; Wang, S.; Ma, S. Q.; Sun, Q. Integration of thermoelectric conversion with reverse electrodialysis for mitigating ion concentration polarization and achieving enhanced output power density. ACS Energy Lett. 2022, 7, 2937–2943.

    CAS  Google Scholar 

  17. de Kok, J. M.; de Valk, C.; van Kester, J. H. T. M.; de Goede, E.; Uittenbogaard, R. E. Salinity and temperature stratification in the Rhine Plume. Estuar. Coast. Shelf Sci. 2001, 53, 467–475.

    CAS  Google Scholar 

  18. Gingerich, D. B.; Mauter, M. S. Quantity, quality, and availability of waste heat from united states thermal power generation. Environ. Sci. Technol. 2015, 49, 8297–8306.

    CAS  Google Scholar 

  19. Lindley, D. The energy should always work twice. Nature 2009, 458, 138–141.

    CAS  Google Scholar 

  20. Bao, B.; Hao, J. R.; Bian, X. J.; Zhu, X. B.; Xiao, K.; Liao, J. W.; Zhou, J. J.; Zhou, Y. Z.; Jiang, L. 3D porous hydrogel/conducting polymer heterogeneous membranes with electro-/pH-modulated ionic rectification. Adv. Mater. 2017, 29, 1702926.

    Google Scholar 

  21. Zhao, Y. M.; Yan, Y. G.; Cui, X.; Wu, X. W.; Wang, H.; Huang, J.; Qiu, X. Y. A conductive, self-healing hybrid hydrogel with excellent water-retention and thermal stability by introducing ethylene glycol as a crystallization inhibitor. Colloids Surf. A Physicochem. Eng. Asp. 2020, 607, 125443.

    CAS  Google Scholar 

  22. Guo, Y. H.; Zhao, F.; Zhou, X. Y.; Chen, Z. C.; Yu, G. H. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 2019, 19, 2530–2536.

    CAS  Google Scholar 

  23. Lei, W. W.; Qi, S. H.; Rong, Q. F.; Huang, J.; Xu, Y. C.; Fang, R. C.; Liu, K. S.; Jiang, L.; Liu, M. J. Diffusion-freezing-induced microphase separation for constructing large-area multiscale structures on hydrogel surfaces. Adv. Mater. 2019, 31, 1808217.

    Google Scholar 

  24. Shi, Y.; Zhang, J.; Pan, L. J.; Shi, Y.; Yu, G. H. Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today 2016, 11, 738–762.

    CAS  Google Scholar 

  25. Zhao, F.; Shi, Y.; Pan, L. J.; Yu, G. H. Multifunctional nanostructured conductive polymer gels: Synthesis, properties, and applications. Acc. Chem. Res. 2017, 50, 1734–1743.

    CAS  Google Scholar 

  26. Shi, Y.; Yu, G. H. Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem. Mater. 2016, 28, 2466–2477.

    CAS  Google Scholar 

  27. Kim, D. K.; Duan, C. H.; Chen, Y. F.; Majumdar, A. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 2010, 9, 1215–1224.

    CAS  Google Scholar 

  28. Xiao, K.; Giusto, P.; Wen, L. P.; Jiang, L.; Antonietti, M. Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes. Angew. Chem., Int. Ed. 2018, 57, 10123–10126.

    CAS  Google Scholar 

  29. Schoch, R. B.; Han, J.; Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80, 839–883.

    CAS  Google Scholar 

  30. Rollings, R. C.; Kuan, A. T.; Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 2016, 7, 11408.

    CAS  Google Scholar 

  31. Ding, L.; Xiao, D.; Lu, Z.; Deng, J. J.; Wei, Y. Y.; Caro, J.; Wang, H. H. Oppositely charged Ti3C2T MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem., Int. Ed. 2020, 59, 8720–8726.

    CAS  Google Scholar 

  32. Vermaas, D. A.; Veerman, J.; Saakes, M.; Nijmeijer, K. Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy Environ. Sci. 2014, 7, 1434–1445.

    CAS  Google Scholar 

  33. Zhang, Z.; Yang, S.; Zhang, P. P.; Zhang, J.; Chen, G. B.; Feng, X. L. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 2019, 10, 2920.

    Google Scholar 

  34. Xin, W. W.; Xiao, H. Y.; Kong, X. Y.; Chen, J. J.; Yang, L. S.; Niu, B.; Qian, Y. C.; Teng, Y. F.; Jiang, L.; Wen, L. P. Biomimetic nacrelike silk-crosslinked membranes for osmotic energy harvesting. ACS Nano 2020, 14, 9701–9710.

    CAS  Google Scholar 

  35. Xin, W. W.; Zhang, Z.; Huang, X. D.; Hu, Y. H.; Zhou, T.; Zhu, C. C.; Kong, X. Y.; Jiang, L.; Wen, L. P. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat. Commun. 2019, 10, 3876.

    Google Scholar 

  36. Gao, J.; Guo, W.; Feng, D.; Wang, H. T.; Zhao, D. Y.; Jiang, L. Highperformance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 2014, 136, 12265–12272.

    CAS  Google Scholar 

  37. Zhou, S.; Xie, L.; Zhang, L. P.; Wen, L. P.; Tang, J. Y.; Zeng, J.; Liu, T. Y.; Peng, D. N.; Yan, M.; Qiu, B. L. et al. Interfacial super-assembly of ordered mesoporous silica-alumina heterostructure membranes with pH-sensitive properties for osmotic energy harvesting. ACSAppl. Mater. Interfaces 2021, 13, 8782–8793.

    CAS  Google Scholar 

  38. Zhang, Z.; Sui, X.; Li, P.; Xie, G. H.; Kong, X. Y.; Xiao, K.; Gao, L. C.; Wen, L. P.; Jiang, L. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 2017, 139, 8905–8914.

    CAS  Google Scholar 

  39. Huang, X. D.; Zhang, Z.; Kong, X. Y.; Sun, Y.; Zhu, C. C.; Liu, P.; Pang, J. H.; Jiang, L.; Wen, L. P. Engineered PES/SPES nanochannel membrane for salinity gradient power generation. Nano Energy 2019, 59, 354–362.

    CAS  Google Scholar 

  40. Zhu, X. B.; Hao, J. R.; Bao, B.; Zhou, Y. H.; Zhang, H. B.; Pang, J. H.; Jiang, Z. H.; Jiang, L. Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system. Sci. Adv. 2018, 4, eaau1665.

    CAS  Google Scholar 

  41. Liu, Y. C.; Yeh, L. H.; Zheng, M. J.; Wu, K. C. W. Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv. 2021, 7, eabe9924.

    CAS  Google Scholar 

  42. Li, R. R.; Jiang, J. Q.; Liu, Q. Q.; Xie, Z. Q.; Zhai, J. Hybrid nanochannel membrane based on polymer/MOF for highperformance salinity gradient power generation. Nano Energy 2018, 53, 643–649.

    CAS  Google Scholar 

  43. Chen, W. P.; Zhang, Q. R.; Qian, Y. C.; Xin, W. W.; Hao, D. Z.; Zhao, X. L.; Zhu, C. C.; Kong, X. Y.; Lu, B. Z.; Jiang, L. et al. Improved ion transport in hydrogel-based nanofluidics for osmotic energy conversion. ACS Cent. Sci. 2020, 6, 2097–2104.

    CAS  Google Scholar 

  44. Chen, W. P.; Wang, Q.; Chen, J. J.; Zhang, Q. R.; Zhao, X. L.; Qian, Y. C.; Zhu, C. C.; Yang, L. S.; Zhao, Y. Y.; Kong, X. Y. et al. Improved ion transport and high energy conversion through hydrogel membrane with 3D interconnected nanopores. Nano Lett. 2020, 20, 5705–5713.

    CAS  Google Scholar 

  45. Zhang, Z.; He, L.; Zhu, C. C.; Qian, Y. C.; Wen, L. P.; Jiang, L. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 2020, 11, 875.

    Google Scholar 

  46. Zhang, W. Y.; Yan, H. L.; Wang, Q. W.; Zhao, C. L. An extended Teorell-Meyer-Sievers theory for membrane potential under non-isothermal conditions. J. Membr. Sci. 2022, 643, 120073.

    CAS  Google Scholar 

  47. Long, R.; Kuang, Z. F.; Liu, Z. C.; Liu, W. Ionic thermal up-diffusion in nanofluidic salinity-gradient energy harvesting. Natl. Sci. Rev. 2019, 6, 1266–1273.

    Google Scholar 

  48. Tseng, S.; Li, Y. M.; Lin, C. Y.; Hsu, J. P. Salinity gradient power: Influences of temperature and nanopore size. Nanoscale 2016, 8, 2350–2357.

    CAS  Google Scholar 

  49. Mai, V. P.; Huang, W. H.; Yang, R. J. Enhancing ion transport through nanopores in membranes for salinity gradient power generation. ACS EST Eng. 2021, 1, 1725–1752.

    CAS  Google Scholar 

  50. Chen, K. X.; Yao, L. N.; Su, B. Bionic thermoelectric response with nanochannels. J. Am. Chem. Soc. 2019, 141, 8608–8615.

    CAS  Google Scholar 

  51. Zhang, P. C.; Chen, S. F.; Zhu, C. J.; Hou, L. X.; Xian, W. P.; Zuo, X. H.; Zhang, Q. H.; Zhang, L.; Ma, S. Q.; Sun, Q. Covalent organic framework nanofluidic membrane as a platform for highly sensitive bionic thermosensation. Nat. Commun. 2021, 12, 1844.

    CAS  Google Scholar 

  52. Wu, Y. D.; Zhou, T.; Wang, Y.; Qian, Y. X.; Chen, W. P.; Zhu, C. C.; Niu, B.; Kong, X. Y.; Zhao, Y. F.; Lin, X. B. et al. The synergistic effect of space and surface charge on nanoconfined ion transport and nanofluidic energy harvesting. Nano Energy 2022, 92, 106709.

    CAS  Google Scholar 

  53. Hwang, J.; Sekimoto, T.; Hsu, W. L.; Kataoka, S.; Endo, A.; Daiguji, H. Thermal dependence of nanofluidic energy conversion by reverse electrodialysis. Nanoscale 2017, 9, 12068–12076.

    CAS  Google Scholar 

  54. Mai, V. P.; Yang, R. J. Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect. Appl. Energy 2020, 274, 115294.

    CAS  Google Scholar 

  55. Zhu, H. Y.; Qu, Z. G.; Wang, Q.; Zhang, J. F. Dimension unification and dominance evaluation of multi-physical parameters for nanochannel-based ionic thermoelectric energy conversion using similarity principle. Energy Convers. Manage., 2023, 276, 116589.

    CAS  Google Scholar 

  56. Ren, Q. L.; Chen, K. L.; Zhu, H. Y.; Zhang, J. F.; Qu, Z. G. Nanoparticle enhanced salinity-gradient osmotic energy conversion under photothermal effect. Energy Convers. Manage., 2022, 251, 115032.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2022YFB3805904, 2022YFB3805900, and 2020YFA0710401), the National Natural Science Foundation of China (Nos. 22122207, 21988102, and 52075138), CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry (No. BMIS202102), China Postdoctoral Science Foundation (Nos. 2022TQ0345, 2022M723229, and 2022M713226), and Postdoctoral International Exchange Talent-Introducing Program (No. YJ20220199).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weipeng Chen or Liping Wen.

Electronic Supplementary Material

12274_2023_5794_MOESM1_ESM.pdf

Temperature difference-enhanced salinity gradient energy conversion enabled by thermostable hydrogel membrane with anti-swelling property

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhou, T., Kong, XY. et al. Temperature difference-enhanced salinity gradient energy conversion enabled by thermostable hydrogel membrane with anti-swelling property. Nano Res. 16, 11288–11295 (2023). https://doi.org/10.1007/s12274-023-5794-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5794-8

Keywords

Navigation