Skip to main content
Log in

Emergence of charge density wave and Ising superconductivity in centrosymmetric monolayer 1T-HfTe2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 26 June 2023

This article has been updated

Abstract

Understanding and control of many-body collective phenomena such as charge density wave (CDW) and superconductivity in atomically thin crystals remains a hot topic in material science. Here, using first-principles calculations, we find that 1T-HfTe2 possessing no CDWs in the bulk form, unexpectedly shows a stable 2 × 2 CDW order in the monolayer form, which can be attributed to the enhancement of electron–phonon coupling (EPC) in the monolayer. Meanwhile, the CDW induces a metal-to-insulator transition in monolayer 1T-HfTe2 through the accompanying lattice distortion. Remarkably, Ising superconductivity with a significantly enhanced in-plane critical field can emerge in centrosymmetric monolayer 1T-HfTe2 after the CDW is suppressed by electron doping. The Ising paring is revealed to be protected by the spin–orbital locking without the participation of the inversion symmetry breaking which is a must for conventional 2H-NbSe2-like Ising superconductors. Our results open a new window for designing and controlling novel quantum states in two-dimensional (2D) matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 1988, 60, 1129–1181.

    Google Scholar 

  2. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

    CAS  Google Scholar 

  3. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    CAS  Google Scholar 

  4. Xie, S. Y.; Wang, Y. L.; Li, X. B. Flat boron: A new cousin of graphene. Adv. Mater. 2019, 31, 1900392.

    Google Scholar 

  5. Wang, W.; Zhang, K.; Si, C. Two-dimensional charge-density-wave materials with unique advantages for electronics. Mater. Lab 2022, 1, 220027.

    Google Scholar 

  6. Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotech. 2015, 10, 765–769.

    CAS  Google Scholar 

  7. Chen, P.; Chan, Y. H.; Fang, X. Y.; Zhang, Y.; Chou, M. Y.; Mo, S. K.; Hussain, Z.; Fedorov, A. V.; Chiang, T. C. Charge density wave transition in single-layer titanium diselenide. Nat. Commun. 2015, 6, 8943.

    CAS  Google Scholar 

  8. Singh, B.; Hsu, C. H.; Tsai, W. F.; Pereira, V. M.; Lin, H. Stable charge density wave phase in a 1T-TiSe2 monolayer. Phys. Rev. B 2017, 95, 245136.

    Google Scholar 

  9. Ryu, H.; Chen, Y.; Kim, H.; Tsai, H. Z.; Tang, S. J.; Jiang, J.; Liou, F.; Kahn, S.; Jia, C. H.; Omrani, A. A. et al. Persistent charge-density-wave order in single-layer TaSe2. Nano Lett. 2018, 18, 689–694.

    CAS  Google Scholar 

  10. Lian, C. S.; Heil, C.; Liu, X. Y.; Si, C.; Giustino, F.; Duan, W. H. Coexistence of superconductivity with enhanced charge density wave order in the two-dimensional limit of TaSe2. J. Phys. Chem. Lett. 2019, 10, 4076–4081.

    CAS  Google Scholar 

  11. Liu, L. W.; Yang, H.; Huang, Y. T.; Song, X.; Zhang, Q. Z.; Huang, Z. P.; Hou, Y. H.; Chen, Y. Y.; Xu, Z. Q.; Zhang, T. et al. Direct identification of Mott Hubbard band pattern beyond charge density wave superlattice in monolayer 1T-NbSe2. Nat. Commun. 2021, 12, 1978.

    CAS  Google Scholar 

  12. Chen, Y.; Ruan, W.; Wu, M.; Tang, S. J.; Ryu, H.; Tsai, H. Z.; Lee, R. L.; Kahn, S.; Liou, F.; Jia, C. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 2020, 16, 218–224.

    CAS  Google Scholar 

  13. Nakata, Y.; Sugawara, K.; Chainani, A.; Oka, H.; Bao, C. H.; Zhou, S. H.; Chuang, P. Y.; Cheng, C. M.; Kawakami, T.; Saruta, Y. et al. Robust charge-density wave strengthened by electron correlations in monolayer 1T-TaSe2 and 1T-NbSe2. Nat. Commun. 2021, 12, 5873.

    CAS  Google Scholar 

  14. Zhang, K.; Si, C.; Lian, C. S.; Zhou, J.; Sun, Z. M. Mottness collapse in monolayer 1T-TaSe2 with persisting charge density wave order. J. Mater. Chem. C 2020, 8, 9742–9747.

    CAS  Google Scholar 

  15. Ge, Y. Z.; Liu, A. Y. First-principles investigation of the charge-density-wave instability in 1T-TaSe2. Phys. Rev. B 2010, 82, 155133.

    Google Scholar 

  16. Duvjir, G.; Choi, B. K.; Jang, I.; Ulstrup, S.; Kang, S.; Thi Ly, T.; Kim, S.; Choi, Y. H.; Jozwiak, C.; Bostwick, A. et al. Emergence of a metal-insulator transition and high-temperature charge-density waves in VSe2 at the monolayer limit. Nano Lett. 2018, 18, 5432–5438.

    CAS  Google Scholar 

  17. Zhang, K.; Zou, N. L.; Ren, Y. R.; Wu, J. Z.; Si, C.; Duan, W. H. Realization of coexisting charge density wave and quantum spin/anomalous Hall state in monolayer NbTe2. Adv. Funct. Mater. 2022, 32, 2111675.

    CAS  Google Scholar 

  18. Liu, M. Z.; Wu, C. W.; Liu, Z. Z.; Wang, Z. Q.; Yao, D. X.; Zhong, D. Y. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738.

    CAS  Google Scholar 

  19. Lin, H. C.; Huang, W. T.; Zhao, K.; Lian, C. S.; Duan, W. H.; Chen, X.; Ji, S. H. Growth of atomically thick transition metal sulfide films on graphene/6H-SiC(0001) by molecular beam epitaxy. Nano Res. 2018, 11, 4722–4727.

    CAS  Google Scholar 

  20. Chen, P.; Pai, W. W.; Chan, Y. H.; Takayama, A.; Xu, C. Z.; Karn, A.; Hasegawa, S.; Chou, M. Y.; Mo, S. K.; Fedorov, A. V. et al. Emergence of charge density waves and a pseudogap in single-layer TiTe2. Nat. Commun. 2017, 8, 516.

    CAS  Google Scholar 

  21. Zhou, J. S.; Bianco, R.; Monacelli, L.; Errea, I.; Mauri, F.; Calandra, M. Theory of the thickness dependence of the charge density wave transition in 1T-TiTe2. 2D Mater. 2020, 7, 045032.

    Google Scholar 

  22. Ren, M. Q.; Han, S.; Fan, J. Q.; Wang, L.; Wang, P. D.; Ren, W.; Peng, K.; Li, S. J.; Wang, S. Z.; Zheng, F. W. et al. Semiconductormetal phase transition and emergent charge density waves in 1T-ZrX2 (X = Se, Te) at the two-dimensional limit. Nano Lett. 2022, 22, 476–484.

    CAS  Google Scholar 

  23. Li, S. Y.; Wu, G.; Chen, X. H.; Taillefer, L. Single-gap s-wave superconductivity near the charge-density-wave quantum critical point in CuxTiSe2. Phys. Rev. Lett. 2007, 99, 107001.

    CAS  Google Scholar 

  24. Kusmartseva, A. F.; Sipos, B.; Berger, H.; Forró, L.; Tutiš, E. Pressure induced superconductivity in pristine 1T-TiSe2. Phys. Rev. Lett. 2009, 103, 236401.

    CAS  Google Scholar 

  25. Lian, C. S.; Si, C.; Duan, W. H. Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional NbSe2. Nano Lett. 2018, 18, 2924–2929.

    CAS  Google Scholar 

  26. Zheng, F. P.; Feng, J. Electron–phonon coupling and the coexistence of superconductivity and charge-density wave in monolayer NbSe2. Phys. Rev. B 2019, 99, 161119.

    CAS  Google Scholar 

  27. Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139–143.

    CAS  Google Scholar 

  28. Lu, J. M.; Zheliuk, O.; Leermakers, I.; Yuan, N. F. Q.; Zeitler, U.; Law, K. T.; Ye, J. T. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 2015, 350, 1353–1357.

    CAS  Google Scholar 

  29. Lu, J. M.; Zheliuk, O.; Chen, Q. H.; Leermakers, I.; Hussey, N. E.; Zeitler, U.; Ye, J. T. Full superconducting dome of strong Ising protection in gated monolayer WS2. Proc. Natl. Acad. Sci. USA 2018, 115, 3551–3556.

    CAS  Google Scholar 

  30. de la Barrera, S. C.; Sinko, M. R.; Gopalan, D. P.; Sivadas, N.; Seyler, K. L.; Watanabe, K.; Taniguchi, T.; Tsen, A. W.; Xu, X. D.; Xiao, D. et al. Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 2018, 9, 1427.

    Google Scholar 

  31. Cui, J.; Li, P. L.; Zhou, J. D.; He, W. Y.; Huang, X. W.; Yi, J.; Fan, J.; Ji, Z. Q.; Jing, X. N.; Qu, F. M. et al. Transport evidence of asymmetric spin-orbit coupling in few-layer superconducting 1Td-MoTe2. Nat. Commun. 2019, 10, 2044.

    Google Scholar 

  32. Wickramaratne, D.; Khmelevskyi, S.; Agterberg, D. F.; Mazin, I. I. Ising superconductivity and magnetism in NbSe2. Phys. Rev. X 2020, 10, 041003.

    CAS  Google Scholar 

  33. Falson, J.; Xu, Y.; Liao, M. H.; Zang, Y. Y.; Zhu, K. J.; Wang, C.; Zhang, Z. T.; Liu, H. C.; Duan, W. H.; He, K. et al. Type-II Ising pairing in few-layer stanene. Science 2020, 367, 1454–1457.

    CAS  Google Scholar 

  34. Wang, C.; Lian, B.; Guo, X. M.; Mao, J. H.; Zhang, Z. T.; Zhang, D.; Gu, B. L.; Xu, Y.; Duan, W. H. Type-II Ising superconductivity in two-dimensional materials with spin-orbit coupling. Phys. Rev. Lett. 2019, 123, 126402.

    CAS  Google Scholar 

  35. Liu, Y.; Xu, Y.; Sun, J.; Liu, C.; Liu, Y. Z.; Wang, C.; Zhang, Z. T.; Gu, K. Y.; Tang, Y.; Ding, C. et al. Type-II Ising superconductivity and anomalous metallic state in macro-size ambient-stable ultrathin crystalline films. Nano Lett. 2020, 20, 5728–5734.

    CAS  Google Scholar 

  36. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  37. Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562.

    CAS  Google Scholar 

  38. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  39. Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

    Google Scholar 

  40. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  41. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

    CAS  Google Scholar 

  42. Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter. 2010, 22, 022201.

    Google Scholar 

  43. Mangelsen, S.; Naumov, P. G.; Barkalov, O. I.; Medvedev, S. A.; Schnelle, W.; Bobnar, M.; Mankovsky, S.; Polesya, S.; Näther, C.; Ebert, H. et al. Large nonsaturating magnetoresistance and pressure-induced phase transition in the layered semimetal HfTe2. Phys. Rev. B 2017, 96, 205148.

    Google Scholar 

  44. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009, 21, 395502.

    Google Scholar 

  45. Giustino, F. Electron-phonon interactions from first principles. Rev. Mod. Phys. 2017, 89, 015003.

    Google Scholar 

  46. Allen, P. B.; Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 1975, 12, 905–922.

    CAS  Google Scholar 

  47. Tsipas, P.; Pappas, P.; Symeonidou, E.; Fragkos, S.; Zacharaki, C.; Xenogiannopoulou, E.; Siannas, N.; Dimoulas, A. Epitaxial HfTe2 dirac semimetal in the 2D limit. APL Mater. 2021, 9, 101103.

    CAS  Google Scholar 

  48. Whangbo, M. H.; Canadell, E.; Foury, P.; Pouget, J. P. Hidden Fermi surface nesting and charge density wave instability in low-dimensional metals. Science 1991, 252, 96–98.

    CAS  Google Scholar 

  49. Laverock, J.; Dugdale, S. B.; Major, Z.; Alam, M. A.; Ru, N.; Fisher, I. R.; Santi, G.; Bruno, E. Fermi surface nesting and charge-density wave formation in rare-earth tritellurides. Phys. Rev. B 2005, 71, 085114.

    Google Scholar 

  50. Johannes, M. D.; Mazin, I. I. Fermi surface nesting and the origin of charge density waves in metals. Phys. Rev. B 2008, 77, 165135.

    Google Scholar 

  51. Weber, F.; Rosenkranz, S.; Castellan, J. P.; Osborn, R.; Hott, R.; Heid, R.; Bohnen, K. P.; Egami, T.; Said, A. H.; Reznik, D. Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. Phys. Rev. Lett. 2011, 107, 107403.

    CAS  Google Scholar 

  52. Hellgren, M.; Baima, J.; Bianco, R.; Calandra, M.; Mauri, F.; Wirtz, L. Critical role of the exchange interaction for the electronic structure and charge-density-wave formation in TiSe2. Phys. Rev. Lett. 2017, 119, 176401.

    Google Scholar 

  53. Aminalragia-Giamini, S.; Marquez-Velasco, J.; Tsipas, P.; Tsoutsou, D.; Renaud, G.; Dimoulas, A. Molecular beam epitaxy of thin HfTe2 semimetal films. 2D Mater. 2016, 4, 015001.

    Google Scholar 

  54. Nakata, Y.; Sugawara, K.; Chainani, A.; Yamauchi, K.; Nakayama, K.; Souma, S.; Chuang, P. Y.; Cheng, C. M.; Oguchi, T.; Ueno, K. et al. Dimensionality reduction and band quantization induced by potassium intercalation in 1T-HfTe2. Phys. Rev. Mater. 2019, 3, 071001.

    CAS  Google Scholar 

  55. El Youbi, Z.; Jung, S. W.; Mukherjee, S.; Fanciulli, M.; Schusser, J.; Heckmann, O.; Richter, C.; Minár, J.; Hricovini, K.; Watson, M. D. et al. Bulk and surface electronic states in the dosed semimetallic HfTe2. Phys. Rev. B 2020, 101, 235431.

    CAS  Google Scholar 

  56. Wei, M. J.; Lu, W. J.; Xiao, R. C.; Lv, H. Y.; Tong, P.; Song, W. H.; Sun, Y. P. Manipulating charge density wave order in monolayer 1T-TiSe2 by strain and charge doping: A first-principles investigation. Phys. Rev. B 2017, 96, 165404.

    Google Scholar 

  57. Calandra, M.; Mauri, F. Charge-density wave and superconducting dome in TiSe2 from electron–phonon interaction. Phys. Rev. Lett. 2011, 106, 196406.

    Google Scholar 

  58. Mostofi, A. A.; Yates, J. R.; Pizzi, G.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2014, 185, 2309–2310.

    CAS  Google Scholar 

  59. Tinkham, M. Introduction to Superconductivity. McGraw Hill: New York, 1996.

    Google Scholar 

  60. Zhang, X. M.; Jin, K. H.; Mao, J. H.; Zhao, M. W.; Liu, Z.; Liu, F. Prediction of intrinsic topological superconductivity in Mn-doped GeTe monolayer from first-principles. npj Comput. Mater. 2021, 7, 44.

    Google Scholar 

  61. Zhang, X. M.; Liu, F. Fulde-Ferrell-Larkin-Ovchinnikov pairing induced by a Weyl nodal line in an Ising superconductor with a high critical field. Phys. Rev. B 2022, 105, 024505.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12274013 and 11874079), the open research fund program of the State key laboratory of low dimensional quantum physics (No. KF202103), and the Independent Research Project of Medical Engineering Laboratory of Chinese PLA General Hospital (No. 2022SYSZZKY10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Si.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wu, J. & Si, C. Emergence of charge density wave and Ising superconductivity in centrosymmetric monolayer 1T-HfTe2. Nano Res. 16, 11521–11527 (2023). https://doi.org/10.1007/s12274-023-5780-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5780-1

Keywords

Navigation