Skip to main content
Log in

Multiscale structural design of MnO2@GO superoxide dismutase nanozyme for protection against antioxidant damage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rational design of metallic active sites and its microenvironment is critical for constructing superoxide dismutase (SOD) nanozymes. Here, we reported a novel SOD nanozyme design, with employing graphene oxide (GO) as the framework, and δ-MnO2 as the active sites, to mimic the natural Mn-SOD. This MnO2@GO nanozyme exhibited multiscale laminated structures with honeycomb-like morphology, providing highly specific surface area for ·O 2 adsorption and confined spaces for subsequent catalytic reactions. Thus, the nanozyme achieved superlative SOD-like catalytic performance with inhibition rate of 95.5%, which is 222.6% and 1605.4% amplification over GO and MnO2 nanoparticles, respectively. Additionally, such unique hierarchical structural design endows MnO2@GO with catalytic specificity, which was not present in the individual component (GO or MnO2). This multiscale structural design provides new strategies for developing highly active and specific SOD nanozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, D. Transition metals as catalysts of “autoxidation” reactions. Free Radical Biol. Med. 1990, 8, 95–108.

    CAS  Google Scholar 

  2. Zhao, H. Q.; Zhang, R. F.; Yan, X. Y.; Fan, K. L. Superoxide dismutase nanozymes: An emerging star for anti-oxidation. J. Mater. Chem. B 2021, 9, 6939–6957.

    CAS  Google Scholar 

  3. Valko, M.; Morris, H.; Cronin, M. T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208.

    CAS  Google Scholar 

  4. Reaume, A. G.; Elliott, J. L.; Hoffman, E. K.; Kowall, N. W.; Ferrante, R. J.; Siwek, D. R.; Wilcox, H. M.; Flood, D. G.; Beal, M. F.; Brown, R. H. Jr. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet. 1996, 13, 43–47.

    CAS  Google Scholar 

  5. Finkel, T.; Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247.

    CAS  Google Scholar 

  6. Tong, L. Y.; Chuang, C. C.; Wu, S. Y.; Zuo, L. Reactive oxygen species in redox cancer therapy. Cancer Lett. 2015, 367, 18–25.

    CAS  Google Scholar 

  7. Fridovich, I. Superoxide radicals, superoxide dismutases and the aerobic lifestyle. Photochem. Photobiol. 1978, 28, 733–741.

    CAS  Google Scholar 

  8. Lu, M. J.; Wang, J. L.; Ren, G. Y.; Qin, F. J.; Zhao, Z. Q.; Li, K.; Chen, W. X.; Lin, Y. Q. Superoxide-like Cu/GO single-atom catalysts nanozyme with high specificity and activity for removing superoxide free radicals. Nano Res. 2022, 15, 8804–8809.

    CAS  Google Scholar 

  9. Zhong, J.; Zhang, Q.; Zhang, Z.; Shi, K. X.; Sun, Y. C.; Liu, T.; Lin, J.; Yang, K. Albumin mediated reactive oxygen species scavenging and targeted delivery of methotrexate for rheumatoid arthritis therapy. Nano Res. 2022, 15, 153–161.

    CAS  Google Scholar 

  10. Wang, W.; Jiang, X. P.; Chen, K. Z. Iron phosphate microflowers as peroxidase mimic and superoxide dismutase mimic for biocatalysis and biosensing. Chem. Commun. 2012, 48, 7289–7291.

    CAS  Google Scholar 

  11. Zelko, I. N.; Mariani, T. J.; Folz, R. J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biol. Med. 2002, 33, 337–349.

    CAS  Google Scholar 

  12. Gorecki, M.; Beck, Y.; Hartman, J. R.; Fischer, M.; Weiss, L.; Tochner, Z.; Slavin, S.; Nimrod, A. Recombinant human superoxide dismutases: Production and potential therapeutical uses. Free Radical Res. Commun. 1991, 12, 401–410.

    Google Scholar 

  13. Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105.

    CAS  Google Scholar 

  14. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    CAS  Google Scholar 

  15. Jiang, B.; Guo, Z. J.; Liang, M. M. Recent progress in single-atom nanozymes research. Nano Res. 2023, 16, 1878–1889.

    CAS  Google Scholar 

  16. Ding, H.; Wang, D. J.; Huang, H. B.; Chen, X. Z.; Wang, J.; Sun, J. J.; Zhang, J. L.; Lu, L.; Miao, B. P.; Cai, Y. J. et al. Black phosphorus quantum dots as multifunctional nanozymes for tumor photothermal/catalytic synergistic therapy. Nano Res. 2022, 15, 1554–1563.

    CAS  Google Scholar 

  17. Wong, G. H. Protective roles of cytokines against radiation: Induction of mitochondrial MnSOD. Biochim. Biophys. Acta 1995, 1271, 205–209.

    Google Scholar 

  18. Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S. C.; Wang, X. Y.; Wu, J. J. X.; Li, S. R.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927–2933.

    CAS  Google Scholar 

  19. Jiang, X. M.; Gray, P.; Patel, M.; Zheng, J. W.; Yin, J. J. Crossover between anti- and pro-oxidant activities of different manganese oxide nanoparticles and their biological implications. J. Mater. Chem. B 2020, 8, 1191–1201.

    CAS  Google Scholar 

  20. Azadmanesh, J.; Borgstahl, G. E. O. A review of the catalytic mechanism of human manganese superoxide dismutase. Antioxidants 2018, 7, 25.

    Google Scholar 

  21. Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

    CAS  Google Scholar 

  22. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    CAS  Google Scholar 

  23. Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024.

    CAS  Google Scholar 

  24. Jia, F. C.; Xiao, X.; Nashalian, A.; Shen, S.; Yang, L.; Han, Z. Y.; Qu, H. J.; Wang, T. M.; Ye, Z.; Zhu, Z. J. et al. Advances in graphene oxide membranes for water treatment. Nano Res. 2022, 15, 6636–6654.

    CAS  Google Scholar 

  25. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

    CAS  Google Scholar 

  26. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Crystalline Mater. 2005, 220, 567–570.

    CAS  Google Scholar 

  27. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    CAS  Google Scholar 

  28. Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J. J.; Pham, D. T.; Jo, J.; Xiu, Z. L.; Mathew, V.; Kim, J. A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 2015, 60, 121–125.

    CAS  Google Scholar 

  29. Chen, L. J.; Yin, H. F.; Zhang, Y. C.; Xie, H. D. Facile synthesis of modified MnO2/reduced graphene oxide nanocomposites and their application in supercapacitors. Nano 2020, 15, 2050099.

    CAS  Google Scholar 

  30. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’Homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

    CAS  Google Scholar 

  31. Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873.

    CAS  Google Scholar 

  32. Julien, C.; Massot, M.; Baddour-Hadjean, R.; Franger, S.; Bach, S.; Pereira-Ramos, J. P. Raman spectra of birnessite manganese dioxides. Solid State Ionics 2003, 159, 345–356.

    CAS  Google Scholar 

  33. Li, Z. P.; Mi, Y. J.; Liu, X. H.; Liu, S.; Yang, S. R.; Wang, J. Q. Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J. Mater. Chem. 2011, 21, 14706–14711.

    CAS  Google Scholar 

  34. Kim, M.; Hwang, Y.; Kim, J. Process dependent graphene/MnO2 composites for supercapacitors. Chem. Eng. J. 2013, 230, 482–490.

    CAS  Google Scholar 

  35. Lei, Z. B.; Shi, F. H.; Lu, L. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl. Mater. Interfaces 2012, 4, 1058–1064.

    CAS  Google Scholar 

  36. Mondal, J.; Srivastava, S. K. δ-MnO2 nanoflowers and their reduced graphene oxide nanocomposites for electromagnetic interference shielding. ACS Appl. Nano Mater. 2020, 3, 11048–11059.

    CAS  Google Scholar 

  37. Liu, Y. P.; Sheng, W. F.; Wu, Z. H. Synchrotron radiation and its applications progress in inorganic materials. J. Inorg. Mater. 2021, 36, 901–918.

    Google Scholar 

  38. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    CAS  Google Scholar 

  39. Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen, W. X. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994–5999.

    CAS  Google Scholar 

  40. Kobayashi, S.; Kottegoda, I. R. M.; Uchimoto, Y.; Wakihara, M. XANES and EXAFS analysis of nano-size manganese dioxide as a cathode material for lithium-ion batteries. J. Mater. Chem. 2004, 14, 1843–1848.

    CAS  Google Scholar 

  41. Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

    CAS  Google Scholar 

  42. Shen, X. M.; Liu, W. Q.; Gao, X. J.; Lu, Z. H.; Wu, X. C.; Gao, X. F. Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: A general way to the activation of molecular oxygen. J. Am. Chem. Soc. 2015, 137, 15882–15891.

    CAS  Google Scholar 

  43. De Gruijl, F. R. Skin cancer and solar UV radiation. Eur. J. Cancer 1999, 35, 2003–2009.

    CAS  Google Scholar 

  44. Melnikova, V. O.; Ananthaswamy, H. N. Cellular and molecular events leading to the development of skin cancer. Mutat. Res. 2005, 571, 91–106.

    CAS  Google Scholar 

  45. Loft, S.; Poulsen, H. E. Cancer risk and oxidative DNA damage in man. J. Mol. Med. 1996, 74, 297–312.

    CAS  Google Scholar 

  46. Marnett, L. J. Oxyradicals and DNA damage. Carcinogenesis 2000, 21, 361–370.

    CAS  Google Scholar 

  47. Kasai, H. Chemistry-based studies on oxidative DNA damage: Formation, repair, and mutagenesis. Free Radical Biol. Med. 2002, 33, 450–456.

    CAS  Google Scholar 

  48. Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202301879.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52202344, T2225026, 82172087, and 82071308), the National Key R&D Program of China (No. 2022YFA1205801), and Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanjun Guo, Ningning Song or Minmin Liang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhang, Y., Wang, Y. et al. Multiscale structural design of MnO2@GO superoxide dismutase nanozyme for protection against antioxidant damage. Nano Res. 16, 10763–10769 (2023). https://doi.org/10.1007/s12274-023-5760-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5760-5

Keywords

Navigation