Skip to main content
Log in

A homologous strategy to parallelly construct doped MOFs-derived electrodes for flexible solid-state hybrid supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing efficient and cost-effective electrode materials is of essential significance to advance various energy storage technologies, among which flexible supercapacitors hold great promise to meet the growing popularity of wearable electronics. Herein, we report a homologous strategy to parallelly synthesize phosphorus-doped ZnCo2O4 (P-ZnCo2O4@NCC) and nitrogen-doped carbon (NC@NCC) both derived from ZnCo-metal-organic frameworks (MOFs) precursors in-situ grown on dopamine-modified carbon cloth (NCC) as conductive substrates. Impressively, the as-obtained P-ZnCo2O4@NCC can achieve a high specific capacitance of 2702.2 mF·cm−2 at 1 mA·cm−2 with the capacitance retention rate exceeding 70.6% at 10 mA·cm−2, demonstrating the outstanding rate capability. Moreover, flexible solid-state hybrid supercapacitors, using P-ZnCo2O4@NCC as positive electrode and NC@NCC as negative electrode, are assembled with poly(vinyl alcohol) (PVA)/KOH as the gel electrolyte, which deliver the energy density of 11.9 mWh·cm−3 when the power density reaches up to 47.3 mW·cm−3. In addition, 85.15% of the initial specific capacitance is maintained after 5000 continuous cycles and no obvious capacitance decay is observed under different bending conditions, revealing the excellent cycling stability and flexibility. As a proof-of-concept demonstration, two as-assembled hybrid supercapacitors connected in series can light up a red light-emitting diode (LED) under the bending angle of 180°, heralding the feasibility for broad practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lv, T.; Liu, M. X.; Zhu, D. Z.; Gan, L. H.; Chen, T. Nanocarbon-based materials for flexible all-solid-state supercapacitors. Adv. Mater. 2018, 30, 1705489.

    Google Scholar 

  2. Wang, J.; Jia, L. J.; Zhong, J.; Xiao, Q. B.; Wang, C.; Zang, K. T.; Liu, H. T.; Zheng, H. C.; Luo, J.; Yang, J. et al. Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Mater. 2019, 18, 246–252.

    Google Scholar 

  3. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    CAS  Google Scholar 

  4. Keum, K.; Kim, J. W.; Hong, S. Y.; Son, J. G.; Lee, S. S.; Ha, J. S. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv. Mater. 2020, 32, 2002180.

    CAS  Google Scholar 

  5. Zheng, Y. C.; Wang, Y. L.; Zhao, J. P.; Li, Y. Electrostatic interfacial cross-linking and structurally oriented fiber constructed by surface-modified 2D MXene for high-performance flexible pseudocapacitive storage. ACS Nano 2023, 17, 2487–2496.

    CAS  Google Scholar 

  6. Zhao, Z. F.; Wang, X. J.; Yao, M. J.; Liu, L. L.; Niu, Z. Q.; Chen, J. Activated carbon felts with exfoliated graphene nanosheets for flexible all-solid-state supercapacitors. Chin. Chem. Lett. 2019, 30, 915–918.

    CAS  Google Scholar 

  7. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  8. Wang, X. X.; Liu, K. H.; Li, J.; Liu, Y. Y.; Wang, M. R.; Cui, H. T. Creation of an extrinsic pseudocapacitive material presenting extraordinary cycling-life with the battery-type material Co(OH)2 by S2− doping for application in supercapacitors. Chem. Eng. J. 2023, 451, 138969.

    CAS  Google Scholar 

  9. He, Y. N.; Liu, T.; Song, J. N.; Wang, Y. W.; Zhang, Y. X.; Feng, J.; Meng, A. L.; Li, G. C.; Wang, L.; Zhao, J. et al. Lithiation-induced controllable vacancy engineering for developing highly active Ni3Se2 as a high-rate and large-capacity battery-type cathode in hybrid supercapacitors. J. Energy Chem. 2023, 78, 37–46.

    CAS  Google Scholar 

  10. Kunwar, R.; Harilal, M.; Krishnan, S. G.; Pal, B.; Misnon, I. I.; Mariappan, C. R.; Ezema, F. I.; Elim, H. I.; Yang, C. C.; Jose, R. Pseudocapacitive charge storage in thin nanobelts. Adv. Fiber Mater. 2019, 1, 205–213.

    Google Scholar 

  11. Zhou, J. J.; Li, Q.; Chen, C.; Li, Y. L.; Tao, K.; Han, L. Co3O4@CoNi-LDH core/shell nanosheet arrays for high-performance battery-type supercapacitors. Chem. Eng. J. 2018, 350, 551–558.

    CAS  Google Scholar 

  12. Lai, C. W.; Wang, S. H.; Cheng, L. L.; Wang, Y. X.; Fu, L.; Sun, Y.; Lin, B. P. High-performance asymmetric supercapacitors of advanced double ion-buffering reservoirs based on battery-type hierarchical flower-like Co3O4-GC microspheres and 3D holey graphene aerogels. Electrochim. Acta 2021, 365, 137334.

    CAS  Google Scholar 

  13. Liu, S. D.; Yin, Y.; Shen, Y.; Hui, K. S.; Chun, Y. T.; Kim, J. M.; Hui, K. N.; Zhang, L. P.; Jun, S. C. Phosphorus regulated cobalt oxide@nitrogen-doped carbon nanowires for flexible quasi-solid-state supercapacitors. Small 2020, 16, 1906458.

    CAS  Google Scholar 

  14. Liu, S. D.; Kang, L.; Hu, J. S.; Jung, E.; Zhang, J.; Jun, S. C.; Yamauchi, Y. Unlocking the potential of oxygen-deficient copper-doped Co3O4 nanocrystals confined in carbon as an advanced electrode for flexible solid-state supercapacitors. ACS Energy Lett. 2021, 6, 3011–3019.

    CAS  Google Scholar 

  15. Yu, D. B.; Ge, L.; Wu, B.; Wu, L.; Wang, H. T.; Xu, T. W. Precisely tailoring ZIF-67 nanostructures from cobalt carbonate hydroxide nanowire arrays: Toward high-performance battery-type electrodes. J. Mater. Chem. A 2015, 3, 16688–16694.

    CAS  Google Scholar 

  16. Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; O’Keeffe, M.; Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1257–1283.

    CAS  Google Scholar 

  17. Zhan, W. W.; Sun, L. M.; Han, X. G. Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nano-Micro Lett. 2019, 11, 1.

    CAS  Google Scholar 

  18. Wang, J.; Zhang, J.; Duan, S. R.; Jia, L. J.; Xiao, Q. B.; Liu, H. T.; Hu, H. M.; Cheng, S.; Zhang, Z. Y.; Li, L. G. Lithium atom surface diffusion and delocalized deposition propelled by atomic metal catalyst toward ultrahigh-capacity dendrite-free lithium anode. Nano Lett. 2022, 22, 8008–8017.

    CAS  Google Scholar 

  19. Sakamoto, R.; Fukui, N.; Maeda, H.; Toyoda, R.; Takaishi, S.; Tanabe, T.; Komeda, J.; Amo-Ochoa, P.; Zamora, F.; Nishihara, H. Layered metal-organic frameworks and metal-organic nanosheets as functional materials. Coord. Chem. Rev. 2022, 472, 214787.

    CAS  Google Scholar 

  20. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    CAS  Google Scholar 

  21. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  22. Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.

    CAS  Google Scholar 

  23. Gao, Z. G.; Iqbal, A.; Hassan, T.; Zhang, L. M.; Wu, H. J.; Koo, C. M. Texture regulation of metal-organic frameworks, microwave absorption mechanism-oriented structural optimization and design perspectives. Adv. Sci. 2022, 9, 2204151.

    CAS  Google Scholar 

  24. Kuppler, R. J.; Timmons, D. J.; Fang, Q. R.; Li, J. R.; Makal, T. A.; Young, M. D.; Yuan, D. Q.; Zhao, D.; Zhuang, W. J.; Zhou, H. C. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 2009, 253, 3042–3066.

    CAS  Google Scholar 

  25. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    CAS  Google Scholar 

  26. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    CAS  Google Scholar 

  27. Liao, L. P.; Zheng, K.; Zhang, Y.; Li, X. Z.; Jiang, D. G.; Liu, J. Q. Self-templated pseudomorphic transformation of ZIF into layered double hydroxides for improved supercapacitive performance. J. Colloid Interface Sci. 2022, 622, 309–318.

    CAS  Google Scholar 

  28. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Google Scholar 

  29. Xue, B.; Li, K. Z.; Gu, S. Y.; Lu, J. H. Zeolitic imidazolate frameworks (ZIFs)-derived NixCo3−xO4/CNTs nanocomposites with enhanced electrochemical performance for supercapacitor. J. Colloid Interface Sci. 2018, 530, 233–242.

    CAS  Google Scholar 

  30. Zhang, Z.; Deng, S. L.; Wang, D. L.; Qing, Y.; Yan, G.; Li, L.; Wu, Y. Q. Low-tortuosity carbon electrode derived from wood@ZIF-67 for supercapacitor applications. Chem. Eng. J. 2023, 454, 140410.

    CAS  Google Scholar 

  31. Li, Z. X.; Feng, T.; Zhou, P.; Zhang, R. B.; Liu, G. Growth of flower-like MnO2 on porous ZIF-67 for achieving enhanced supercapacitive properties. Energy Fuels 2022, 36, 14490–14499.

    CAS  Google Scholar 

  32. Chen, F. Z.; Xu, J.; Wang, S. Y.; Lv, Y. H.; Li, Y.; Chen, X.; Xia, A. L.; Li, Y. T.; Wu, J. X.; Ma, L. B. Phosphorus/phosphide-based materials for alkali metal-ion batteries. Adv. Sci. 2022, 9, 2200740.

    CAS  Google Scholar 

  33. Wang, J. M.; Liu, Z.; Zheng, Y. W.; Cui, L.; Yang, W. R.; Liu, J. Q. Recent advances in cobalt phosphide based materials for energy-related applications. J. Mater. Chem. A 2017, 5, 22913–22932.

    CAS  Google Scholar 

  34. Wang, X.; Kim, H. M.; Xiao, Y.; Sun, Y. K. Nanostructured metal phosphide-based materials for electrochemical energy storage. J. Mater. Chem. A 2016, 4, 14915–14931.

    CAS  Google Scholar 

  35. Wang, C.; Sui, G.; Guo, D. X.; Li, J. L.; Zhang, L.; Li, S. B.; Xin, J. J.; Chai, D. F.; Guo, W. X. Structure-designed synthesis of hollow/porous cobalt sulfide/phosphide based materials for optimizing supercapacitor storage properties and hydrogen evolution reaction. J. Colloid Interface Sci. 2021, 599, 577–585.

    CAS  Google Scholar 

  36. Zhang, J.; You, C. Y.; Lin, H. Z.; Wang, J. Electrochemical kinetic modulators in lithium-sulfur batteries: From defect-rich catalysts to single atomic catalysts. Energy Environ. Mater. 2022, 5, 731–750.

    CAS  Google Scholar 

  37. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    CAS  Google Scholar 

  38. Li, J. S.; Zhang, S.; Sha, J. Q.; Wang, H.; Liu, M. Z.; Kong, L. X.; Liu, G. D. Confined molybdenum phosphide in P-doped porous carbon as efficient electrocatalysts for hydrogen evolution. ACS Appl. Mater. Interfaces 2018, 10, 17140–17146.

    CAS  Google Scholar 

  39. Hong, W.; Kitta, M.; Xu, Q. Bimetallic MOF-derived FeCo-P/C nanocomposites as efficient catalysts for oxygen evolution reaction. Small Methods 2018, 2, 1800214.

    Google Scholar 

  40. Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    CAS  Google Scholar 

  41. Zhai, T.; Wan, L. M.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q. Y.; Xia, H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 2017, 29, 1604167.

    Google Scholar 

  42. Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236–2241.

    CAS  Google Scholar 

  43. Gao, X.; DelaCruz, S.; Zhu, C. H.; Cheng, S. Y.; Gardner, D.; Xie, Y. H.; Carraro, C.; Maboudian, R. Surface functionalization of carbon cloth with cobalt-porphyrin-based metal organic framework for enhanced electrochemical sensing. Carbon 2019, 148, 64–71.

    CAS  Google Scholar 

  44. Patil, S. J.; Chodankar, N. R.; Hwang, S. K.; Shinde, P. A.; Seeta Rama Raju, G.; Shanmugam Ranjith, K.; Huh, Y. S.; Han, Y. K. Co-metal-organic framework derived CoSe2@MoSe2 core–shell structure on carbon cloth as an efficient bifunctional catalyst for overall water splitting. Chem. Eng. J. 2022, 429, 132379.

    CAS  Google Scholar 

  45. Yang, Z. Z.; Zhou, Z. L.; Li, C. W.; Ma, P. K.; Wang, C.; Wang, H. Y. ZnCo2O4 nanorods coated with annealed polypyrrole/poly(vinyl alcohol) composites as anode materials for lithium-ion batteries. ACS Appl. Nano Mater. 2021, 4, 4496–4503.

    CAS  Google Scholar 

  46. Ge, X. L.; Li, Z. Q.; Wang, C. X.; Yin, L. W. Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery. ACS Appl. Mater. Interfaces 2015, 7, 26633–26642.

    CAS  Google Scholar 

  47. Maity, D.; Karmakar, K.; Pal, D.; Saha, S.; Khan, G. G.; Mandal, K. One-dimensional p-ZnCo2O4/n-ZnO nanoheterojunction photoanode enabling photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 11599–11608.

    CAS  Google Scholar 

  48. Moon, I. K.; Yoon, S.; Ki, B.; Choi, K.; Oh, J. Remarkable enhancement of electrochemical performance by the oxygen vacancy and nitrogen doping in ZnCo2O4 nanowire arrays. ACS Appl. Energy Mater. 2018, 1, 4804–4813.

    CAS  Google Scholar 

  49. Gao, G. X.; Wu, H. B.; Dong, B. T.; Ding, S. J.; Lou, X. W. D. Growth of ultrathin ZnCo2O4 nanosheets on reduced graphene oxide with enhanced lithium storage properties. Adv. Sci. 2015, 2, 1400014.

    Google Scholar 

  50. Gao, J. N.; Jiang, B.; Ni, C. C.; Qi, Y. F.; Bi, X. J. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies. Chem. Eng. J. 2020, 382, 123034.

    CAS  Google Scholar 

  51. Hao, Y. W.; Du, G. H.; Fan, Y.; Jia, L. N.; Han, D.; Zhao, W. Q.; Su, Q. M.; Ding, S. K.; Xu, B. S. Mo/P dual-doped co/oxygen-deficient Co3O4 core–shell nanorods supported on Ni foam for electrochemical overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 55263–55271.

    CAS  Google Scholar 

  52. Wang, D. R.; Deng, Y. P.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Hu, Y. F.; Shakouri, M.; Wang, X.; Chen, Z. W. Defect engineering on three-dimensionally ordered macroporous phosphorus doped Co3O4−δ microspheres as an efficient bifunctional electrocatalyst for Zn-air batteries. Energy Storage Mater. 2021, 41, 427–435.

    Google Scholar 

  53. Gopi, C. V. V. M.; Vinodh, R.; Sambasivam, S.; Obaidat, I. M.; Singh, S.; Kim, H. J. Co9S8−Ni3S2/CuMn2O4−NiMn2O4 and MnFe2O4−ZnFe2O4/graphene as binder-free cathode and anode materials for high energy density supercapacitors. Chem. Eng. J. 2020, 381, 122640.

    CAS  Google Scholar 

  54. Jia, H.; Wang, J.; Fu, W.; Hu, J.; Liu, Y. In-situ MOFs-derived hollow Co9S8 polyhedron welding on the top of MnCo2S4 nanoneedles for high performance hybrid supercapacitors. Chem. Eng. J. 2020, 391, 123541.

    CAS  Google Scholar 

  55. Yang, Q. J.; Wang, Q. S.; Long, Y.; Wang, F.; Wu, L. L.; Pan, J.; Han, J.; Lei, Y.; Shi, W. D.; Song, S. Y. In situ formation of Co9S8 quantum dots in MOF-derived ternary metal layered double hydroxide nanoarrays for high-performance hybrid supercapacitors. Adv. Energy Mater. 2020, 10, 1903193.

    CAS  Google Scholar 

  56. Lyu, L.; Seong, K. D.; Kim, J. M.; Zhang, W.; Jin, X. Z.; Kim, D. K.; Jeon, Y.; Kang, J.; Piao, Y. CNT/high mass loading MnO2/graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors. Nano-Micro Lett. 2019, 11, 88.

    CAS  Google Scholar 

  57. Li, J. E.; Wang, Y. W.; Xu, W. N.; Wang, Y.; Zhang, B.; Luo, S.; Zhou, X. Y.; Zhang, C. L.; Gu, X.; Hu, C. G. Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 2019, 57, 379–387.

    CAS  Google Scholar 

  58. Liu, S. D.; Kang, L.; Zhang, J.; Jung, E.; Lee, S.; Jun, S. C. Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Storage Mater. 2020, 32, 167–177.

    Google Scholar 

  59. Zhang, Y.; Yuan, X. M.; Lu, W. B.; Yan, Y. S.; Zhu, J. W.; Chou, T. W. MnO2 based sandwich structure electrode for supercapacitor with large voltage window and high mass loading. Chem. Eng. J. 2019, 368, 525–532.

    CAS  Google Scholar 

  60. Yan, B.; Zheng, J. J.; Feng, L.; Du, C.; Jian, S. J.; Yang, W. S.; Wu, Y. A.; Jiang, S. H.; He, S. J.; Chen, W. Wood-derived biochar as thick electrodes for high-rate performance supercapacitors. Biochar 2022, 4, 50.

    CAS  Google Scholar 

  61. Wang, F.; Cheong, J. Y.; He, Q.; Duan, G. G.; He, S. J.; Zhang, L.; Zhao, Y.; Kim, I. D.; Jiang, S. H. Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors. Chem. Eng. J. 2021, 414, 128767.

    CAS  Google Scholar 

  62. Gao, M. Y.; Li, Y. T.; Yang, J. H.; Liu, Y. X.; Liu, Y.; Zhang, X. X.; Wu, S. H.; Cai, K. F. Nickel-cobalt (oxy)hydroxide battery-type supercapacitor electrode with high mass loading. Chem. Eng. J. 2022, 429, 132423.

    CAS  Google Scholar 

  63. Wang, H. Y.; Xu, C. M.; Chen, Y. Q.; Wang, Y. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density. Energy Storage Mater. 2017, 8, 127–133.

    Google Scholar 

  64. Xu, Z. H.; Li, X. L.; Sun, S. S.; Wang, X. H.; Zhang, Z. H.; Li, H. Y.; Yin, S. G. High mass loading NiCoAl layered double hydroxides with interlayer spacing and interface regulation for high-capacity and long-life supercapacitors. J. Power Sources 2022, 546, 231982.

    CAS  Google Scholar 

  65. Sun, C.; Guo, Z. G.; Zhou, M.; Li, X. Y.; Cai, Z. S.; Ge, F. Y. Heteroatoms-doped porous carbon electrodes with three-dimensional self-supporting structure derived from cotton fabric for high-performance wearable supercapacitors. J. Power Sources 2021, 482, 228934.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the start-up funding from University of South China (No. 220XQD016) and the National Natural Science Foundation of China (No. 52170164). C. Y. thanks the Australian Research Council (ARC) for financial support through Discovery Project scheme (No. DP19010186).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Kang or Cheng Yan.

Electronic Supplementary Material

12274_2023_5753_MOESM1_ESM.pdf

A homologous strategy to parallelly construct doped MOFs-derived electrodes for flexible solid-state hybrid supercapacitors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YL., Wang, L., Zeng, Q. et al. A homologous strategy to parallelly construct doped MOFs-derived electrodes for flexible solid-state hybrid supercapacitors. Nano Res. 16, 10890–10898 (2023). https://doi.org/10.1007/s12274-023-5753-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5753-4

Keywords

Navigation