Skip to main content
Log in

Efficiently coupled glucose oxidation for high-value D-glucaric acid with ultradurable hydrogen via Mn(III) in acidic solution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The electrooxidation of the alcohol and aldehyde molecules instead of water coupled with H2 production has been proven to be effective for producing high-value fine chemicals under alkaline conditions. It is also noteworthy that under acidic conditions, the stability of non-noble metal water oxidation catalysts remains a great challenge due to the lattice oxygen mechanism. Hence, we coupled the biomass-derived glucose oxidation for high-value D-glucaric acid (GRA) with ultra-durable hydrogen in acid solution over a Yb-MnO2 catalyst. The Mn3+ regulated by Yb atoms doped in MnO2 can effectively optimize the adsorption and desorption processes of the alcohol and aldehyde group and improve the intrinsic activity but cannot for H2O. The catalyst exhibited extremely high activity and stability after 50 h for glucose oxidation, inhibiting the lattice oxygen process and MnO4− formation, while the activity was quickly lost within 0.5 h for water oxidation. Density functional theory (DFT) calculations further demonstrated that glucose oxidation reaction proceeds preferentially due to the oxidation of aldehyde group with lower adsorption-free energy (−0.4 eV) than water (ΔG > 0 eV), avoiding the lattice oxygen mechanism. This work suggests that biomass-derived glucose oxidation not only provides a cost-effective approach for high-value chemicals, but also shows an extremely potential as an alternative to acidic oxygen evolution reaction (OER) for ultradurable H2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    CAS  Google Scholar 

  2. Gao, J. J.; Tao, H. B.; Liu, B. Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2021, 33, 2003786.

    CAS  Google Scholar 

  3. Hu, K. L.; Ohto, T.; Nagata, Y.; Wakisaka, M.; Aoki, Y.; Fujita, J. I.; Ito, Y. Catalytic activity of graphene-covered non-noble metals governed by proton penetration in electrochemical hydrogen evolution reaction. Nat. Commun. 2021, 12, 203.

    CAS  Google Scholar 

  4. Yan, D. F.; Mebrahtu, C.; Wang, S. Y.; Palkovits, R. Innovative electrochemical strategies for hydrogen production: From electricity input to electricity output. Angew. Chem., Int. Ed. 2023, 62, e202214333.

    CAS  Google Scholar 

  5. Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

    Google Scholar 

  6. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2022, 62, e202212653.

    Google Scholar 

  7. Fan, C.; Wang, X.; Wu, X. R.; Chen, Y. S.; Wang, Z. X.; Li, M.; Sun, D. M.; Tang, Y. W.; Fu, G. T. Neodymium-evoked valence electronic modulation to balance reversible oxygen electrocatalysis. Adv. Energy Mater. 2022, 13, 2203244.

    Google Scholar 

  8. Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

    CAS  Google Scholar 

  9. Yan, D. F.; Xia, C. F.; Zhang, W. J.; Hu, Q.; He, C. X.; Xia, B. Y.; Wang, S. Y. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2202317.

    CAS  Google Scholar 

  10. Wang, N.; Ou, P. F.; Miao, R. K.; Chang, Y. X.; Wang, Z. Y.; Hung, S. F.; Abed, J.; Ozden, A.; Chen, H. Y.; Wu, H. L.; et al. Doping shortens the metal/metal distance and promotes OH coverage in non-noble acidic oxygen evolution reaction catalysts. J. Am. Chem. Soc. 2022, 14, 7829–7836.

    Google Scholar 

  11. Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Zhang, Z. J.; Ni, B. J. Boride-based electrocatalysts: Emerging candidates for water splitting. Nano Res. 2020, 13, 293–314.

    CAS  Google Scholar 

  12. Zhu, H.; Sun, S. S.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2022, 16, 619–628.

    Google Scholar 

  13. Zhang, N.; Chai, Y. Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ. Sci. 2021, 14, 4647–4671.

    CAS  Google Scholar 

  14. Wu, Y. Z.; Zhao, Y. Y.; Zhai, P. L.; Wang, C.; Gao, J. F.; Sun, L. C.; Hou, J. G. Triggering lattice oxygen activation of single-atomic Mo sites anchored on Ni-Fe oxyhydroxides nanoarrays for electrochemical water oxidation. Adv. Mater. 2022, 34, 220523.

    Google Scholar 

  15. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

    CAS  Google Scholar 

  16. Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L. Electrocatalytic hydrogen production trilogy. Angew. Chem., Int. Ed. 2021, 60, 19550–19571.

    CAS  Google Scholar 

  17. Li, A. L.; Kong, S.; Guo, C. X.; Ooka, H.; Adachi, K.; Hashizume, D.; Jiang, Q. K.; Han, H. X.; Xiao, J. P.; Nakamura, R. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 2022, 5, 109–118.

    CAS  Google Scholar 

  18. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of singleatom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    CAS  Google Scholar 

  19. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  20. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Google Scholar 

  21. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    CAS  Google Scholar 

  22. Zhu, Y.; Wang, X.; Zhu, X. H.; Wu, Z. X.; Zhao, D. S.; Wang, F.; Sun, D. M.; Tang, Y. W.; Li, H.; Fu, G. T. Improving the oxygen evolution activity of layered double-hydroxide via erbium-induced electronic engineering. Small 2022, 19, 2206531.

    Google Scholar 

  23. Kasavi, C.; Finore, I.; Lama, L.; Nicolaus, B.; Oliver, S. G.; Oner, E. T.; Kirdar, B. Evaluation of industrial Saccharomyces cerevisiae strains for ethanol production from biomass. Biomass Bioenergy 2012, 45, 230–238.

    CAS  Google Scholar 

  24. Park, M.; Gu, M. S.; Kim, B. S. Tailorable electrocatalytic 5-hydroxymethylfurfural oxidation and H2 production: Architecture–performance relationship in bifunctional multilayer electrodes. ACS Nano 2020, 14, 6812–6822.

    CAS  Google Scholar 

  25. Cha, H. G.; Choi, K. S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 2015, 7, 328–333.

    CAS  Google Scholar 

  26. Hayashi, E.; Yamaguchi, Y.; Kamata, K.; Tsunoda, N.; Kumagai, Y.; Oba, F.; Hara, M. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. J. Am. Chem. Soc. 2019, 141, 890–900.

    CAS  Google Scholar 

  27. Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.

    CAS  Google Scholar 

  28. Zhang, N. N.; Zou, Y. Q.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z. J.; Zhou, B.; Huang, G.; Lin, H. Z.; Wang, S. Y. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: Reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 15898–15903.

    CAS  Google Scholar 

  29. Wang, X.; Wang, J. W.; Wang, P.; Li, L. C.; Zhang, X. Y.; Sun, D. M.; Li, Y. F.; Tang, Y. W.; Wang, Y.; Fu, G. T. Engineering 3d–2p–4f gradient orbital coupling to enhance electrocatalytic oxygen reduction. Adv. Mater. 2022, 34, 2206540.

    CAS  Google Scholar 

  30. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  31. Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572–19590.

    CAS  Google Scholar 

  32. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  33. Chen, W.; Xu, L. T.; Zhu, X. R.; Huang, Y. C.; Zhou, W.; Wang, D. D.; Zhou, Y. Y.; Du, S. Q.; Li, Q. L.; Xie, C. et al. Unveiling the electrooxidation of urea: Intramolecular coupling of the N–N bond. Angew. Chem., Int. Ed. 2021, 60, 7297–7307.

    CAS  Google Scholar 

  34. Liu, W. J.; Xu, Z. R.; Zhao, D. T.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S. et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 2020, 11, 265.

    CAS  Google Scholar 

  35. Zhang, Q. Z.; Wan, Z. H.; Yu, I. K. M.; Tsang, D. C. W. Sustainable production of high-value gluconic acid and glucaric acid through oxidation of biomass-derived glucose: A critical review. J. Cleaner Prod. 2021, 312, 127745.

    CAS  Google Scholar 

  36. Li, Y.; Wei, X. F.; Han, S. F.; Chen, L. S.; Shi, J. L. MnO2 electrocatalysts coordinating alcohol oxidation for ultra-durable hydrogen and chemical productions in acidic solutions. Angew. Chem., Int. Ed. 2021, 60, 21464–21472.

    CAS  Google Scholar 

  37. Si, D.; Xiong, B. Y.; Chen, L. S.; Shi, J. L. Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution. Chem Catal. 2021, 1, 941–955.

    CAS  Google Scholar 

  38. You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639–13646.

    CAS  Google Scholar 

  39. Yan, G. B.; Lian, Y. B.; Gu, Y. D.; Yang, C.; Sun, H.; Mu, Q. Q.; Li, Q.; Zhu, W.; Zheng, X. S.; Chen, M. Z. et al. Phase and morphology transformation of MnO2 induced by ionic liquids toward efficient water oxidation. ACS Catal. 2018, 8, 10137–10147.

    CAS  Google Scholar 

  40. Lv, Y.; Kong, A. Q.; Zhang, H. J.; Yang, W. W.; Chen, Y. C.; Liu, M. H.; Fu, Y.; Zhang, J. L.; Li, W. Electrocatalytic oxidation of toluene into benzaldehyde based on molecular oxygen activation over oxygen vacancy of heteropoly acid. Appl. Surf. Sci. 2022, 599, 153916.

    CAS  Google Scholar 

  41. Choi, Y.; Lim, D.; Oh, E.; Lim, C.; Baeck, S. H. Effect of proton irradiation on electrocatalytic properties of MnO2 for oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 11659–11664.

    CAS  Google Scholar 

  42. Chan, Z. M.; Kitchaev, D. A.; Weker, J. N.; Schnedermann, C.; Lim, K.; Ceder, G.; Tumas, W.; Toney, M. F.; Nocera, D. G. Electrochemical trapping of metastable Mn3+ ions for activation of MnO2 oxygen evolution catalysts. Proc. Natl. Acad. Sci. USA 2018, 115, E5261–E5268.

    CAS  Google Scholar 

  43. Tian, H.; Zeng, L. M.; Huang, Y. F.; Ma, Z. H.; Meng, G.; Peng, L. X.; Chen, C.; Cui, X. Z.; Shi, J. L. In situ elctrochemical Mn(III)/Mn(IV) generation of Mn(II)O electrocatalysts for high-performance oxygen reduction. Nano-Micro Lett. 2020, 12, 161.

    CAS  Google Scholar 

  44. Tao, H. B.; Xu, Y. H.; Huang, X.; Chen, J. Z.; Pei, L. J.; Zhang, J. M.; Chen, J. G.; Liu, B. A general method to probe oxygen evolution intermediates at operating conditions. Joule 2019, 3, 1498–1509.

    CAS  Google Scholar 

  45. Kong, D. C.; Dong, C. F.; Ni, X. Q.; Zhang, L.; Luo, H.; Li, R. X.; Wang, L.; Man, C.; Li, X. G. Superior resistance to hydrogen damage for selective laser melted 316L stainless steel in a proton exchange membrane fuel cell environment. Corros. Sci. 2020, 166, 108425.

    CAS  Google Scholar 

  46. Zhang, S. C.; Liu, Z. F.; Ruan, M. N.; Guo, Z. G.; E, L.; Zhao, W.; Zhao, D.; Wu, X. F.; Chen, D. M. Enhanced piezoelectric-effect-assisted photoelectrochemical performance in ZnO modified with dual cocatalysts. Appl. Catal. B: Environ. 2020, 262, 118279.

    CAS  Google Scholar 

  47. Solmi, S.; Morreale, C.; Ospitali, F.; Agnoli, S.; Cavani, F. Oxidation of D-glucose to glucaric acid using Au/C catalysts. ChemCatChem 2017, 9, 2797–2806.

    CAS  Google Scholar 

  48. Bender, M. T.; Warburton, R. E.; Hammes-Schiffer, S.; Choi, K. S. Understanding hydrogen atom and hydride transfer processes during electrochemical alcohol and aldehyde oxidation. ACS Catal. 2021, 11, 15110–15124.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U19A2017) and the Natural Science Foundation of Shandong Province (No. ZR2020QB120).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongxiao Tuo, Zhiyan Guo, Dawei Chen or Shenghua Chen.

Electronic Supplementary Material

12274_2023_5752_MOESM1_ESM.pdf

Efficiently coupled glucose oxidation for high-value D-glucaric acid with ultradurable hydrogen via Mn(III) in acidic solution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Jiang, Y., Zhang, X. et al. Efficiently coupled glucose oxidation for high-value D-glucaric acid with ultradurable hydrogen via Mn(III) in acidic solution. Nano Res. 16, 10748–10755 (2023). https://doi.org/10.1007/s12274-023-5752-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5752-5

Keywords

Navigation