Skip to main content
Log in

Modeling and optimization of a spherical triboelectric generator

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A detailed geometric analysis of spherical triboelectric nanogenerators is presented. In comparison with earlier works on spherical triboelectric generators, the general case where the moving dielectric rolls on the inside surface of the larger sphere of the TENG is discussed in terms of maximum energy harvesting. An optimization analysis of geometrical parameters allows various cases of electrode geometry, either in the form of a spherical circle, spherical ellipse, spherical rectangle, or spherical isosceles trapezium, to be solved. The analytical insight and computational effective models provided by differential geometry make the mathematical model superior compared to standard three-dimensional (3D) numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  2. Harper, W. F. Contact and Frictional Electrification; Clarendon Press: Oxford, 1967.

    Google Scholar 

  3. Horn, R. G.; Smith, D. T.; Grabbe, A. Contact electrification induced by monolayer modification of a surface and relation to acid-base interactions. Nature 1993, 366, 442–443.

    Article  CAS  Google Scholar 

  4. Lowell, J.; Rose-Innes, A. C. Contact electrification. Adv. Phys. 1980, 29, 947–1023.

    Article  CAS  Google Scholar 

  5. Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

    Article  CAS  Google Scholar 

  6. Hinchet, R.; Yoon, H. J.; Ryu, H.; Kim, M. K.; Choi, E. K.; Kim, D. S.; Kim, S. W. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 2019, 365, 491–494.

    Article  CAS  Google Scholar 

  7. Wang, Z. L.; Lin, L.; Chen, J.; Niu, S. M.; Zi, Y. L. Triboelectric Nanogenerators; Springer: Cham, 2016.

    Book  Google Scholar 

  8. Wang, Z. L. New wave power. Nature 2017, 542, 159–160.

    Article  Google Scholar 

  9. Shao, J. J.; Willatzen, M.; Wang, Z. L. Theoretical modeling of triboelectric nanogenerators (TENGs). J. Appl. Phys. 2020, 128, 111101.

    Article  CAS  Google Scholar 

  10. Gravesen, J.; Willatzen, M.; Shao, J. J.; Wang, Z. L. Energy optimization of a mirror-symmetric spherical triboelectric nanogenerator. Adv. Funct. Mater. 2022, 32, 2110516.

    Article  CAS  Google Scholar 

  11. Gravesen, J.; Willatzen, M.; Shao, J. J.; Wang, Z. L. Modeling and optimization of a rotational symmetric spherical triboelectric generator. Nano Energy 2022, 100, 107491.

    Article  CAS  Google Scholar 

  12. Gravesen, J.; Willatzen, M.; Shao, J. J.; Wang, Z. L. Handbook of triboelectric nanogenerators; Wang, Z. L., Ed.; Springer, 2022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Willatzen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gravesen, J., Willatzen, M., Shao, J. et al. Modeling and optimization of a spherical triboelectric generator. Nano Res. 16, 11925–11931 (2023). https://doi.org/10.1007/s12274-023-5745-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5745-4

Keywords

Navigation