Skip to main content
Log in

Real-time identification of multiple nanoclusters with a protein nanopore in single-cluster level

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It is important and challenging to analyze nanocluster structure with atomic precision. Herein, α-hemolysin nanopore was used to identify nanoclusters at the single molecule level by providing two-dimensional (2D) dwell time–current blockage spectra and translocation event frequency which sensitively depended on their structures. Nanoclusters such as Anderson, Keggin, Dawson, and a few lacunary Dawson polyoxometalates with very similar structures, even with only a two-atom difference, could be discriminated. This nanopore device could simultaneously measure multiple nanoclusters in a mixture qualitatively and quantitatively. Furthermore, molecular dynamics (MD) simulations provided microscopic understandings of the nanocluster translocation dynamics and yielded 2D dwell time–current blockage spectra in close agreement with experiments. The nanopore platform provides a novel powerful tool for nanocluster characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

    Article  CAS  Google Scholar 

  2. Liu, Q. D.; He, P. L.; Yu, H. D.; Gu, L.; Ni, B.; Wang, D.; Wang, X. Single molecule-mediated assembly of polyoxometalate single-cluster rings and their three-dimensional superstructures. Sci. Adv. 2019, 5, eaa1081.

    Article  Google Scholar 

  3. Vilà-Nadal, L.; Mitchell, S. G.; Long, D. L.; Rodríguez-Fortea, A.; López, X.; Poblet, J. M.; Cronin, L. Exploring the rotational isomerism in non-classical Wells-Dawson anions {W18X}: A combined theoretical and mass spectrometry study. Dalton Trans. 2012, 41, 2264–2271.

    Article  Google Scholar 

  4. Wang, S. X.; Meng, X. M.; Das, A.; Li, T.; Song, Y. B.; Cao, T. T.; Zhu, X. Y.; Zhu, M. Z.; Jin, R. C. A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25−x nanoclusters: The 13th silver atom matters. Angew. Chem., Int. Ed. 2014, 53, 2376–2380.

    Article  CAS  Google Scholar 

  5. Gao, W. P.; Tieu, P.; Addiego, C.; Ma, Y. L.; Wu, J. B.; Pan, X. Q. Probing the dynamics of nanoparticle formation from a precursor at atomic resolution. Sci. Adv. 2019, 5, eaau9590.

    Article  Google Scholar 

  6. Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Häkkinen, H. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 2014, 136, 5000–5005.

    Article  CAS  Google Scholar 

  7. Reetz, M. T.; Helbig, W. Size-selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc. 1994, 116, 7401–7402.

    Article  CAS  Google Scholar 

  8. Chen, T. K.; Yao, Q. F.; Nasaruddin, R. R.; Xie, J. P. Electrospray ionization mass spectrometry: A powerful platform for noble-metal nanocluster analysis. Angew. Chem., Int. Ed. 2019, 58, 11967–11977.

    Article  CAS  Google Scholar 

  9. Tian, S. B.; Li, Y. Z.; Li, M. B.; Yuan, J. Y.; Yang, J. L.; Wu, Z. K.; Jin, R. C. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nat. Commun. 2015, 6, 8667.

    Article  CAS  Google Scholar 

  10. Neidig, M. L.; Sharma, J.; Yeh, H. C.; Martinez, J. S.; Conradson, S. D.; Shreve, A. P. Ag K-edge EXAFS analysis of DNA-templated fluorescent silver nanoclusters: Insight into the structural origins of emission tuning by DNA sequence variations. J. Am. Chem. Soc. 2011, 133, 11837–11839.

    Article  CAS  Google Scholar 

  11. Cai, R. S.; Ellis, P. R.; Yin, J. L.; Liu, J.; Brown, C. M.; Griffin, R.; Chang, G. J.; Yang, D. J.; Ren, J.; Cooke, K. et al. Performance of preformed Au/Cu nanoclusters deposited on MgO powders in the catalytic reduction of 4-nitrophenol in solution. Small 2018, 14, 1703734.

    Article  Google Scholar 

  12. Chiu, T. H.; Liao, J. H.; Gam, F.; Wu, Y. Y.; Wang, X. P.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Hydride-containing eight-electron Pt/Ag superatoms: Structure, bonding, and multi-NMR studies. J. Am. Chem. Soc. 2022, 144, 10599–10607.

    Article  CAS  Google Scholar 

  13. Ma, H.; Ying, Y. L. Recent progress on nanopore electrochemistry and advanced data processing. Curr. Opin. Electrochem. 2021, 26, 100675.

    Article  CAS  Google Scholar 

  14. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  15. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    Article  CAS  Google Scholar 

  16. Ying, Y. L.; Hu, Z. L.; Zhang, S. L.; Qing, Y. J.; Fragasso, A.; Maglia, G.; Meller, A.; Bayley, H.; Dekker, C.; Long, Y. T. Nanopore-based technologies beyond DNA sequencing. Nat. Nanotechnol. 2022, 17, 1136–1146.

    Article  CAS  Google Scholar 

  17. Wang, Y. Q.; Zhang, S. Y.; Jia, W. D.; Fan, P. P.; Wang, L. Y.; Li, X. Y.; Chen, J. L.; Cao, Z. Y.; Du, X. Y.; Liu, Y. et al. Identification of nucleoside monophosphates and their epigenetic modifications using an engineered nanopore. Nat. Nanotechnol. 2022, 17, 976–983.

    Article  CAS  Google Scholar 

  18. Niu, X. L.; Liu, Q. H.; Xu, Z. H.; Chen, Z. F.; Xu, L. H.; Xu, L. H.; Li, J. H.; Fang, X. Y. Molecular mechanisms underlying the extreme mechanical anisotropy of the flaviviral exoribonuclease-resistant RNAs (xrRNAs). Nat. Commun. 2020, 11, 5496.

    Article  CAS  Google Scholar 

  19. Tsutsui, M.; He, Y. H.; Yokota, K.; Arima, A.; Hongo, S.; Taniguchi, M.; Washio, T.; Kawai, T. Particle trajectory-dependent ionic current blockade in low-aspect-ratio pores. ACS Nano 2016, 10, 803–809.

    Article  CAS  Google Scholar 

  20. German, S. R.; Hurd, T. S.; White, H. S.; Mega, T. L. Sizing individual Au nanoparticles in solution with sub-nanometer resolution. ACS Nano 2015, 9, 7186–7194.

    Article  CAS  Google Scholar 

  21. Panday, N.; Qian, G. M.; Wang, X. W.; Chang, S.; Pandey, P.; He, J. Simultaneous ionic current and potential detection of nanoparticles by a multifunctional nanopipette. ACS Nano 2016, 10, 11237–11248.

    Article  CAS  Google Scholar 

  22. Song, L. Z.; Hobaugh, M. R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J. E. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 1996, 274, 1859–1865.

    Article  CAS  Google Scholar 

  23. Campos, E.; McVey, C. E.; Carney, R. P.; Stellacci, F.; Astier, Y.; Yates, J. Sensing single mixed-monolayer protected gold nanoparticles by the α-hemolysin nanopore. Anal. Chem. 2013, 85, 10149–10158.

    Article  CAS  Google Scholar 

  24. Campos, E. J.; McVey, C. E.; Astier, Y. Stochastic detection of MPSA-gold nanoparticles using a α-hemolysin nanopore equipped with a noncovalent molecular adaptor. Anal. Chem. 2016, 88, 6214–6222.

    Article  CAS  Google Scholar 

  25. Ettedgui, J.; Kasianowicz, J. J.; Balijepalli, A. Single molecule discrimination of heteropolytungstates and their isomers in solution with a nanometer-scale pore. J. Am. Chem. Soc. 2016, 138, 7228–7231.

    Article  CAS  Google Scholar 

  26. Nomiya, K.; Takahashi, T.; Shirai, T.; Miwa, M. Anderson-type heteropolyanions of molybdenum(VI) and tungsten(VI). Polyhedron 1987, 6, 213–218.

    Article  CAS  Google Scholar 

  27. Tayebee, R. Epoxidation of some olefins with hydrogen peroxide catalyzed by heteropolyoxometalates. Asian J. Chem. 2008, 20, 8–14.

    CAS  Google Scholar 

  28. Graham, C. R.; Finke, R. G. The classic Wells–Dawson polyoxometalate, K6[α-P2W18O62]·14H2O. Answering an 88 year-old question: What is its preferred, optimum synthesis? Inorg. Chem. 2008, 47, 3679–3686.

    Article  CAS  Google Scholar 

  29. Ginsberg, A. P. Inorganic Syntheses; John Wiley and Sons Press: New York, 1990; pp 104–111.

    Book  Google Scholar 

  30. Ke, Q.; Gong, X. T.; Liao, S. W.; Duan, C. X.; Li, L. B. Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J. Mol. Liq. 2022, 365, 120116.

    Article  CAS  Google Scholar 

  31. Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25.

    Article  Google Scholar 

  32. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

    Article  CAS  Google Scholar 

  33. Long, D. L.; Burkholder, E.; Cronin, L. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices. Chem. Soc. Rev. 2007, 36, 105–121.

    Article  CAS  Google Scholar 

  34. Zhang, J.; Song, Y. F.; Cronin, L.; Liu, T. B. Self-assembly of organic-inorganic hybrid amphiphilic surfactants with large polyoxometalates as polar head groups. J. Am. Chem. Soc. 2008, 130, 14408–14409.

    Article  CAS  Google Scholar 

  35. Wang, Y. F.; Weinstock, I. A. Cation mediated self-assembly of inorganic cluster anion building blocks. Dalton Trans. 2010, 39, 6143–6152.

    Article  CAS  Google Scholar 

  36. Wang, X. C.; Zhou, Y.; Chen, G. J.; Li, J.; Long, Z. Y.; Wang, J. Morphology-controlled preparation of heteropolyanion-derived mesoporous solid base. ACS Sustainable Chem. Eng. 2014, 2, 1918–1927.

    Article  CAS  Google Scholar 

  37. López, X.; Nieto-Draghi, C.; Bo, C.; Avalos, J. B.; Poblet, J. M. Polyoxometalates in solution: Molecular dynamics simulations on the α-PW12O 3−40 Keggin anion in aqueous media. J. Phys. Chem. A 2005, 109, 1216–1222.

    Article  Google Scholar 

  38. Moussawi, M. A.; Leclerc-Laronze, N.; Floquet, S.; Abramov, P. A.; Sokolov, M. N.; Cordier, S.; Ponchel, A.; Monflier, E.; Bricout, H.; Landy, D. et al. Polyoxometalate, cationic cluster, and γ-cyclodextrin: From primary interactions to supramolecular hybrid materials. J. Am. Chem. Soc. 2017, 139, 12793–12803.

    Article  CAS  Google Scholar 

  39. Li, M. Y.; Ying, Y. L.; Yu, J.; Liu, S. C.; Wang, Y. Q.; Li, S.; Long, Y. T. Revisiting the origin of nanopore current blockage for volume difference sensing at the atomic level. JACS Au 2021, 1, 967–976.

    Article  CAS  Google Scholar 

  40. Deamer, D. W.; Branton, D. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 2002, 35, 817–825.

    Article  CAS  Google Scholar 

  41. Liao, S. W.; Ke, Q.; Wei, Y. Y.; Li, L. B. Water’s motions in xy and z directions of 2D nanochannels: Entirely different but tightly coupled. Nano Res., in press, https://doi.org/10.1007/s12274-023-5451-2.

  42. Zhao, D. H.; Chen, H.; Wang, Y. Q.; Li, B.; Duan, C. X.; Li, Z. X.; Li, L. B. Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures. Front. Chem. Sci. Eng. 2021, 15, 922–934.

    Article  CAS  Google Scholar 

  43. Henrickson, S. E.; Misakian, M.; Robertson, B.; Kasianowicz, J. J. Driven DNA transport into an asymmetric nanometer-scale pore. Phys. Rev. Lett. 2000, 85, 3057–3060.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key Research and Development Program of China (No. 2021YFA1200104), New Cornerstone Science Foundation, the National Natural Science Foundation of China (Nos. 22027807, 22034004, and 22078104), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), and Tsinghua-Vanke Special Fund for Public Health and Health Discipline Development (No. 2022Z82WKJ003). CPU hours allocated by the Guangzhou Supercomputer Center of China are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Libo Li, Xun Wang or Jinghong Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., He, P., Chen, H. et al. Real-time identification of multiple nanoclusters with a protein nanopore in single-cluster level. Nano Res. 17, 262–269 (2024). https://doi.org/10.1007/s12274-023-5738-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5738-3

Keywords

Navigation