Skip to main content
Log in

Nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels for high-performance supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Three-dimensional graphene materials have been studied as typical supercapacitors electrode materials by virtue of their ultra-high specific surface area and good ion transport capacity. However, improvement of the poor volumetric electrochemical performance of these graphene materials has been required although they have high gravimetric energy density. In this work, nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels (NC-NFGHs) were prepared through a convenient hydrothermal approach utilizing ammonium fluoride as the heteroatom source. Nanocellulose (NC) and high concentration of graphene oxide (GO) were utilized to adjust the structure of NC-NFGHs and increase their packing density. Subsequently, the aqueous symmetric supercapacitor based on NC-NFGH-80 exhibits remarkable gravimetric (286.6 F·g−1) and volumetric (421.3 F·cm−3) specific capacitance at 0.3 A·g−1, good rate performance, and remarkable cycle stability up to 10,000 cycles. Besides, the all-solid-state flexible symmetric supercapacitors (ASSC) fabricated by NC-NFGH-80 also delivered a large specific capacitance of 117.1 F·g−1 at 0.3 A·g−1 and long service life over 10,000 cycles at 10 A·g−1. This compact porous structure and heteroatom co-doped graphene material supply a favorable strategy for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J. Y.; Chen, Z. Y.; Wang, G. Y.; Hou, L. R.; Yuan, C. Z. Eco-friendly and scalable synthesis of micro-/mesoporous carbon submicrospheres as competitive electrodes for supercapacitors and sodium-ion batteries. Appl. Surf. Sci. 2020, 533, 147511.

    CAS  Google Scholar 

  2. Zhang, J. Y.; Wu, D. X.; Zhang, Q.; Zhang, A. N.; Sun, J. F.; Hou, L. R.; Yuan, C. Z. Green self-activation engineering of metal-organic framework derived hollow nitrogen-doped carbon spheres towards supercapacitors. J. Mater. Chem. A 2022, 10, 2932–2944.

    CAS  Google Scholar 

  3. Wang, D.; Qi, S.; Qiu, Y.; Zhang, R.; Zhang, Q.; Liu, S. L.; Zhang, C. J.; Chen, Z. Y.; Pan, H.; Cao, J. et al. High-yield production of non-layered 2D carbon complexes: Thickness manipulation and carbon nanotube branches for enhanced lithium storage properties. J. Energy Chem. 2021, 59, 19–29.

    CAS  Google Scholar 

  4. Denis, D. K.; Sun, X.; Hou, L. R.; Chen, G. Z.; Yuan, C. Z. Rate balance design and construction of a conductive Ni0.5Co0.5MoO4 solid-solution microspherical superstructure toward advanced hybrid supercapacitors. ACS Appl. Energy Mater. 2021, 4, 9470–9478.

    CAS  Google Scholar 

  5. Zhou, L.; Cao, H.; Zhu, S. Q.; Hou, L. R.; Yuan, C. Z. Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: A competitive cost-effective material for high-performance electrochemical capacitors. Green Chem. 2015, 17, 2373–2382.

    CAS  Google Scholar 

  6. Chen, Z. Y.; Sun, J. F.; Bao, R. Q.; Sun, X.; Zhang, J. Y.; Hou, L. R.; Yuan, C. Z. A general eco-friendly production of bio-sources derived micro-/mesoporous carbons with robust supercapacitive behaviors and sodium-ion storage. ACS Sustainable Chem. Eng. 2019, 7, 779–789.

    CAS  Google Scholar 

  7. Qi, S.; Wang, D.; Li, W. J.; Zhang, R.; Liu, F.; Zhang, J. T.; Liu, Z. Y.; Guo, Y. N.; Wang, F. G.; Wen, G. W. Mass production of nitrogen and oxygen codoped carbon nanotubes by a delicately-designed Pechini method for supercapacitors and electrocatalysis. Nanoscale 2019, 11, 17425–17435.

    CAS  Google Scholar 

  8. Yang, P. Y.; Wu, Z. Y.; Jiang, Y. C.; Pan, Z. C.; Tian, W. C.; Jiang, L.; Hu, L. F. Fractal (NixCo1−x)9Se8 nanodendrite arrays with highly exposed \((01\bar{1})\) surface for wearable, all-solid-state supercapacitor. Adv. Energy Mater. 2018, 8, 1801392.

    Google Scholar 

  9. Wu, Z. Y.; Ye, F.; Liu, Q.; Pang, R. L. J.; Liu, Y.; Jiang, L.; Tang, Z. L.; Hu, L. F. Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage. Adv. Energy Mater. 2022, 12, 2200654.

    CAS  Google Scholar 

  10. Wu, Z. Y.; Lu, C. J.; Ye, F.; Zhang, L.; Jiang, L.; Liu, Q.; Dong, H. L.; Sun, Z. M.; Hu, L. F. Bilayered VOPO4·2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 2021, 31, 2106816.

    CAS  Google Scholar 

  11. Pan, Z. H.; Yang, C. H.; Chen, Z. W.; Ji, X. H. Construction of Ti3C2Tx/WOx heterostructures on carbon cloth for ultrahigh-mass loading flexible supercapacitor. Nano Res. 2022, 15, 8991–8999.

    CAS  Google Scholar 

  12. Hou, L. R.; Shi, Y. Y.; Zhu, S. Q.; Rehan, M.; Pang, G.; Zhang, X. G.; Yuan, C. Z. Hollow mesoporous hetero-NiCo2S4/Co9S8 submicrospindles: Unusual formation and excellent pseudocapacitance towards hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 133–144.

    CAS  Google Scholar 

  13. Yu, Q.; Jiang, J. C.; Jiang, L. Y.; Yang, Q. Q.; Yan, N. Advances in green synthesis and applications of graphene. Nano Res. 2021, 14, 3724–3743.

    CAS  Google Scholar 

  14. Zhou, J. S.; Lian, J.; Hou, L.; Zhang, J. C.; Gou, H. Y.; Xia, M. R.; Zhao, Y. F.; Strobel, T. A.; Tao, L.; Gao, F. M. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat. Commun. 2015, 6, 8503.

    CAS  Google Scholar 

  15. Murali, S.; Quarles, N.; Zhang, L. L.; Potts, J. R.; Tan, Z. Q.; Lu, Y. L.; Zhu, Y. W.; Ruoff, R. S. Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano Energy 2013, 2, 764–768.

    CAS  Google Scholar 

  16. Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534–537.

    CAS  Google Scholar 

  17. Wu, Z. Y.; Lu, C. J.; Wang, Y. N.; Zhang, L.; Jiang, L.; Tian, W. C.; Cai, C. L.; Gu, Q. F.; Sun, Z. M.; Hu, L. F. Ultrathin VSe2 nanosheets with fast ion diffusion and robust structural stability for rechargeable zinc-ion battery cathode. Small 2020, 16, 2000698.

    CAS  Google Scholar 

  18. Ban, J. J.; Wen, X. H.; Lei, H. H.; Cao, G. Q.; Liu, X. H.; Niu, C. Y.; Shao, G. S.; Hu, J. H. In-plane grain boundary induced defect state in hierarchical NiCo-LDH and effect on battery-type charge storage. Nano Research 2023, 16, 4908–4916.

    CAS  Google Scholar 

  19. Zhang, X.; Zhang, H. T.; Li, C.; Wang, K.; Sun, X. Z.; Ma, Y. W. Recent advances in porous graphene materials for supercapacitor applications. RSC Adv. 2014, 4, 45862–45884.

    CAS  Google Scholar 

  20. Xu, Y. X.; Shi, G. Q.; Duan, X. F. Self-assembled three-dimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666–1675.

    CAS  Google Scholar 

  21. Yang, L.; He, X. J.; Wei, Y. C.; Bi, H. H.; Wei, F.; Li, H. Q.; Yuan, C. Z.; Qiu, J. S. Interconnected N/P co-doped carbon nanocage as high capacitance electrode material for energy storage devices. Nano Res. 2022, 15, 4068–4075.

    CAS  Google Scholar 

  22. Chen, Y. M.; Guo, M. H.; Xu, L.; Cai, Y. Y.; Tian, X. C.; Liao, X. B.; Wang, Z. Y.; Meng, J. S.; Hong, X. F.; Mai, L. Q. In-situ selective surface engineering of graphene micro-supercapacitor chips. Nano Res. 2022, 15, 1492–1499.

    CAS  Google Scholar 

  23. Fan, S.; Wei, L.; Liu, X. J.; Ma, W. H.; Lou, C. H.; Wang, J. K.; Zhang, Y. High-density oxygen-enriched graphene hydrogels for symmetric supercapacitors with ultrahigh gravimetric and volumetric performance. Int. J. Hydrogen Energy 2021, 46, 39969–39982.

    CAS  Google Scholar 

  24. Zhang, Y.; Wei, L.; Liu, X. J.; Ma, W. H.; Lou, C. H.; Wang, J. K.; Fan, S. Nanocellulose/N, O co-doped graphene composite hydrogels for high gravimetric and volumetric performance symmetric supercapacitors. Int. J. Hydrogen Energy 2022, 47, 33827–33838.

    CAS  Google Scholar 

  25. Kakaei, K.; Balavandi, A. Hierarchically porous fluorine-doped graphene nanosheets as efficient metal-free electrocatalyst for oxygen reduction in gas diffusion electrode. J. Colloid. Interface Sci. 2017, 490, 819–824.

    CAS  Google Scholar 

  26. An, H. R.; Li, Y.; Gao, Y.; Cao, C.; Han, J. K.; Feng, Y. Y.; Feng, W. Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries. Carbon 2017, 116, 338–346.

    CAS  Google Scholar 

  27. Feng, Y. Y.; Zhang, X. Q.; Shen, Y. T.; Yoshino, K.; Feng, W. A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr. Polym. 2012, 87, 644–649.

    CAS  Google Scholar 

  28. Zhang, Y.; Wei, L.; Liu, X. J.; Ma, W. H.; Lou, C. H.; Wang, J. K.; Fan, S. Tromethamine functionalized nanocellulose/reduced graphene oxide composite hydrogels with ultrahigh gravimetric and volumetric performance for symmetric supercapacitors. J. Power Sources 2022, 543, 231851.

    CAS  Google Scholar 

  29. Jankovský, O.; Šimek, P.; Sedmidubský, D.; Matějková, S.; Janoušek, Z.; Šembera, F.; Pumera, M.; Sofer, Z. Water-soluble highly fluorinated graphite oxide. RSC Adv. 2014, 4, 1378–1387.

    Google Scholar 

  30. Li, C.; Wu, Z. Y.; Liang, H. W.; Chen, J. F.; Yu, S. H. Ultralight multifunctional carbon-based aerogels by combining graphene oxide and bacterial cellulose. Small 2017, 13, 1700453.

    Google Scholar 

  31. Lin, Z. Y.; Waller, G.; Liu, Y.; Liu, M. L.; Wong, C. P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884–888.

    CAS  Google Scholar 

  32. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25–29.

    CAS  Google Scholar 

  33. Wang, Z. F.; Wang, J. Q.; Li, Z. P.; Gong, P. W.; Liu, X. H.; Zhang, L. B.; Ren, J. F.; Wang, H. G.; Yang, S. R. Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon 2012, 50, 5403–5410.

    CAS  Google Scholar 

  34. Guan, F. Y.; Chen, S. Y.; Sheng, N.; Chen, Y.; Yao, J. J.; Pei, Q. B.; Wang, H. P. Mechanically robust reduced graphene oxide/bacterial cellulose film obtained via biosynthesis for flexible supercapacitor. Chem. Eng. J. 2019, 360, 829–837.

    CAS  Google Scholar 

  35. Xiao, X. L.; Huang, X. Y.; Wang, A.; Cao, S. J.; Noroozi, M.; Panahi-Sarmad, M. Subtle devising of electro-induced shape memory behavior for cellulose/graphene aerogel nanocomposite. Carbohydr. Polym. 2022, 281, 119042.

    CAS  Google Scholar 

  36. Li, Z. J.; Del Cul, G. D.; Yan, W. F.; Liang, C. D.; Dai, S. Fluorinated carbon with ordered mesoporous structure. J. Am. Chem. Soc. 2004, 126, 12782–12783.

    CAS  Google Scholar 

  37. Valentini, L.; Cardinali, M.; Fortunati, E.; Torre, L.; Kenny, J. M. A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Mater. Lett. 2013, 105, 4–7.

    CAS  Google Scholar 

  38. Arrigo, R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGregor, J.; Parrott, E. P. J.; Zeitler, J. A.; Gladden, L. F.; Knop-Gericke, A. et al. Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc. 2010, 132, 9616–9630.

    CAS  Google Scholar 

  39. Huang, S. Z.; Li, Y.; Feng, Y. Y.; An, H. R.; Long, P.; Qin, C. Q.; Feng, W. Nitrogen and fluorine co-doped graphene as a highperformance anode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 23095–23105.

    CAS  Google Scholar 

  40. Cherusseri, J.; Kumar, K. S.; Pandey, D.; Barrios, E.; Thomas, J. Vertically aligned graphene-carbon fiber hybrid electrodes with superlong cycling stability for flexible supercapacitors. Small 2019, 15, 1902606.

    CAS  Google Scholar 

  41. Kundu, S.; Yadav, R. M.; Narayanan, T. N.; Shelke, M. V.; Vajtai, R.; Ajayan, P. M.; Pillai, V. K. Synthesis of N, F and S co-doped graphene quantum dots. Nanoscale 2015, 7, 11515–11519.

    CAS  Google Scholar 

  42. Yan, L. J.; Li, D.; Yan, T. T.; Chen, G. R.; Shi, L. Y.; An, Z. X.; Zhang, D. S. N,P,S-codoped hierarchically porous carbon spheres with well-balanced gravimetric/volumetric capacitance for supercapacitors. ACS Sustainable Chem. Eng. 2018, 6, 5265–5272.

    CAS  Google Scholar 

  43. Zhou, S.; Sherpa, S. D.; Hess, D. W.; Bongiorno, A. Chemical bonding of partially fluorinated graphene. J. Phys. Chem. C 2014, 118, 26402–26408.

    CAS  Google Scholar 

  44. Hu, Y. F.; Li, Z. C.; Wang, Z. P.; Wang, X. L.; Chen, W.; Wang, J. C.; Zhong, W. W.; Ma, R. G. Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode. Adv. Sci. 2023, 10, 2206995.

    CAS  Google Scholar 

  45. Yang, W. X.; Zhang, Y.; Liu, T. Y.; Huang, R.; Chai, S. G.; Chen, F.; Fu, Q. Completely green approach for the preparation of strong and highly conductive graphene composite film by using nanocellulose as dispersing agent and mechanical compression. ACS Sustainable Chem. Eng. 2017, 5, 9102–9113.

    CAS  Google Scholar 

  46. Shadkam, R.; Naderi, M.; Ghazitabar, A.; Akbari, S. Adsorption performance of reduced graphene-oxide/cellulose nano-crystal hybrid aerogels reinforced with waste-paper extracted cellulose-fibers for the removal of toluene pollution. Mater. Today Commun. 2021, 28, 102610.

    CAS  Google Scholar 

  47. Xu, X. Y.; Yang, J. D.; Zhou, X. F.; Jiang, S. Q.; Chen, W.; Liu, Z. P. Highly crumpled graphene-like material as compression-resistant electrode material for high energy-power density supercapacitor. Chem. Eng. J. 2020, 397, 125525.

    CAS  Google Scholar 

  48. Liu, H. Y.; Song, H. H.; Chen, X. H.; Zhang, S.; Zhou, J. S.; Ma, Z. K. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. J. Power Sources 2015, 285, 303–309.

    CAS  Google Scholar 

  49. Rotte, N. K.; Naresh, V.; Muduli, S.; Reddy, V.; Srikanth, V. V. S.; Martha, S. K. Microwave aided scalable synthesis of sulfur, nitrogen co-doped few-layered graphene material for high-performance supercapacitors. Electrochim. Acta 2020, 363, 137209.

    CAS  Google Scholar 

  50. An, H. R.; Li, Y.; Long, P.; Gao, Y.; Qin, C. Q.; Cao, C.; Feng, Y. Y.; Feng, W. Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J. Power Sources 2016, 312, 146–155.

    CAS  Google Scholar 

  51. Peng, W. J.; Li, H. Q.; Song, S. X. Synthesis of fluorinated graphene/CoAl-layered double hydroxide composites as electrode materials for supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 5204–5212.

    CAS  Google Scholar 

  52. Chen, Y. L.; Li, Y.; Yao, F. N.; Peng, C.; Cao, C.; Feng, Y. Y.; Feng, W. Nitrogen and fluorine co-doped holey graphene hydrogel as a binder-free electrode material for flexible solid-state supercapacitors. Sustainable Energy Fuels 2019, 3, 2237–2245.

    CAS  Google Scholar 

  53. Gui, Z.; Zhu, H. L.; Gillette, E.; Han, X. G.; Rubloff, G. W.; Hu, L. B.; Lee, S. B. Natural cellulose fiber as substrate for supercapacitor. ACS Nano 2013, 7, 6037–6046.

    CAS  Google Scholar 

  54. Lin, Z. P.; Xiao, B. B.; Huang, M.; Yan, L. H.; Wang, Z. P.; Huang, Y. C.; Shen, S. J.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Realizing negatively charged metal atoms through controllabled-electron transfer in ternary Ir1−xRhxSb intermetallic alloy for hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2200855.

    CAS  Google Scholar 

  55. Wang, X. Q.; Zhang, J. T.; Wang, Z. P.; Lin, Z. P.; Shen, S. J.; Zhong, W. W. Fabricating Ru single atoms and clusters on CoP for boosted hydrogen evolution reaction. Chin. J. Struc. Chem., in press, https://doi.org/10.1016/j.cjsc.2023.100035.

  56. Huang, Y. C.; Hu, Z. Y.; Huang, L. A.; Wang, Z. P.; Lin, Z. P.; Shen, S. J.; Zhong, W. W.; Pan, J. Q. Phosphorus-modified cobalt single-atom catalysts loaded on crosslinked carbon nanosheets for efficient alkaline hydrogen evolution reaction. Nanoscale 2023, 15, 3550–3559.

    CAS  Google Scholar 

  57. Zhang, L. L.; Wang, Z. P.; Zhang, J. T.; Lin, Z. P.; Zhang, Q. H.; Zhong, W. W.; Wu, G. F. High activity and stability in Ni2P/(Co, Ni)OOH heterointerface with a multiple-hierarchy structure for alkaline hydrogen evolution reaction. Nano Research 2023, 16, 6552–6559.

    Google Scholar 

  58. Gong, Y. N.; Li, D. L.; Fu, Q.; Zhang, Y. P.; Pan, C. X. Nitrogen self-doped porous carbon for high-performance supercapacitors. ACS Appl. Energy Mater. 2020, 3, 1585–1592.

    CAS  Google Scholar 

  59. Zheng, Q. F.; Cai, Z. Y.; Ma, Z. Q.; Gong, S. Q. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3263–3271.

    CAS  Google Scholar 

  60. Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.

    CAS  Google Scholar 

  61. Zhang, L. L.; Zhang, J. T.; Xu, A. J.; Lin, Z. P.; Wang, Z. P.; Zhong, W. W.; Shen, S. J.; Wu, G. F. Charge redistribution of Co9S8/MoS2 heterojunction microsphere enhances electrocatalytic hydrogen evolution. Biomimetics 2023, 8, 104.

    CAS  Google Scholar 

  62. Gao, K. Z.; Shao, Z. Q.; Li, J.; Wang, X.; Peng, X. Q.; Wang, W. J.; Wang, F. J. Cellulose nanofiber-graphene all solid-state flexible supercapacitors. J. Mater. Chem. A 2013, 1, 63–67.

    CAS  Google Scholar 

  63. Na, W.; Jun, J.; Park, J. W.; Lee, G.; Jang, J. Highly porous carbon nanofibers co-doped with fluorine and nitrogen for outstanding supercapacitor performance. J. Mater. Chem. A 2017, 5, 17379–17387.

    CAS  Google Scholar 

  64. Cao, N.; Wang, T.; Boukherroub, R.; Cai, Y. H.; Qin, Y. J.; Li, F. S.; Liu, P.; Shao, Q. G.; Liu, M. L.; Zang, X. B. Facile and secure synthesis of porous partially fluorinated graphene employing weakly coordinating anion for enhanced high-performance symmetric supercapacitor. J Materiomics 2022, 8, 113–122.

    Google Scholar 

  65. Deng, L. J.; Zhou, C. H.; Ma, Z. Y.; Fan, G. Methylene blue functionalized graphene as binder-free electrode for highperformance solid state supercapacitors. J. Colloid Interface Sci. 2020, 561, 416–425.

    CAS  Google Scholar 

  66. Wang, Z. P.; Lin, Z. P.; Wang, Y. L.; Shen, S. J.; Zhang, Q. H.; Wang, J. C.; Zhong, W. W. Nontrivial topological surface states in Ru3Sn7 toward wide pH-range hydrogen evolution reaction. Adv. Mater., in press, https://doi.org/10.1002/adma.202302007.

  67. Zheng, Z. B.; Liang, W. Z.; Lin, R. Z.; Hu, Z.; Wang, Y. C.; Lu, H. S.; Zhong, W. W.; Shen, S. J.; Pan, Y. Facile synthesis of zinc indium oxide nanofibers distributed with low content of silver for superior antibacterial activity. Small Struct. 2023, 4, 2200291.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (No. 52072191), Heilongjiang Provincial Natural Science Foundation of China (No. LH2020E126), and the Fundamental Research Fund of Heilongjiang Provincial University (No. 135509204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhang or Shan Fan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhou, Q., Ma, W. et al. Nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels for high-performance supercapacitors. Nano Res. 16, 9519–9529 (2023). https://doi.org/10.1007/s12274-023-5736-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5736-5

Keywords

Navigation