Skip to main content
Log in

Flexible high-resolution micro-LED display device with integrations of transparent, conductive, and highly elastic hydrogel

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Computer vision techniques are real-time, immersive, and perceptual human-computer interaction technology. Excellent display effect, dynamic surface flexibility, and safe bio-adhesion are essential for various human–computer interaction applications, such as metaverse interfaces, skin-like sensors, and optoelectronic medical devices. However, realizing the flexible matching of inorganic optoelectronic devices and organisms remains a grand challenge for current display technologies. Here, we proposed a novel strategy by combining the optoelectronic advantages of inorganic micro light emitting diode (micro-LED) display and the extraordinary mechanical/biological compatibility of organic materials to overcome this challenge. A highly elastic (greater than 2000% strain), highly transparent (94% visible light transmittance), biocompatible conductive hydrogel composite electrode layer was fabricated. For the first time, we realized the on-chip electrical interconnection of 4900 LED units to form a blue-green light display patch with high resolution (264 PPI), low power consumption (4.4 mW) and adaptive surface attachment. This work demonstrates an integrated scheme and potential applications of flexible high-resolution microdisplays, such as wearable full-color micro-LED smart curved display devices and conformable biomedical monitoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jang, B.; Won, S.; Kim, J.; Kim, J.; Oh, M.; Lee, H. J.; Kim, J. H. Auxetic meta-display: Stretchable display without image distortion. Adv. Funct. Mater. 2022, 32, 2113299.

    Article  CAS  Google Scholar 

  2. Zhang, Z. T.; Wang, W. C.; Jiang, Y. W.; Wang, Y. X.; Wu, Y. L.; Lai, J. C.; Niu, S. M.; Xu, C. Y.; Shih, C. C.; Wang, C. et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022, 603, 624–630.

    Article  CAS  Google Scholar 

  3. Lee, Y.; Chung, J. W.; Lee, G. H.; Kang, H.; Kim, J. Y.; Bae, C.; Yoo, H.; Jeong, S.; Cho, H.; Kang, S. G. et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 2021, 7, eabg9180.

    Article  CAS  Google Scholar 

  4. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    Article  CAS  Google Scholar 

  5. Tee, B. C. K.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7, 825–832.

    Article  CAS  Google Scholar 

  6. Park, J.; Kim, J.; Kim, S. Y.; Cheong, W. H.; Jang, J.; Park, Y. G.; Na, K.; Kim, Y. T.; Heo, J. H.; Lee, C. Y. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 2018, 4, eaap9841.

    Article  Google Scholar 

  7. Chortos, A.; Liu, J.; Bao, Z. A. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950.

    Article  CAS  Google Scholar 

  8. Wang, Z. W.; Cong, Y.; Fu, J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B 2020, 8, 3437–3459.

    Article  CAS  Google Scholar 

  9. Wagner, S.; Bauer, S. Materials for stretchable electronics. MRS Bull. 2012, 37, 207–213.

    Article  Google Scholar 

  10. Yao, S. S.; Zhu, Y. Nanomaterial-enabled stretchable conductors: Strategies, materials and devices. Adv. Mater. 2015, 27, 1480–1511.

    Article  CAS  Google Scholar 

  11. Yan, C. Y.; Lee, P. S. Stretchable energy storage and conversion devices. Small 2014, 10, 3443–3460.

    Article  CAS  Google Scholar 

  12. Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977–981.

    Article  CAS  Google Scholar 

  13. Kim, R. H.; Bae, M. H.; Kim, D. G.; Cheng, H. Y.; Kim, B. H.; Kim, D. H.; Li, M.; Wu, J.; Du, F.; Kim, H. S. et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 2011, 11, 3881–3886.

    Article  CAS  Google Scholar 

  14. Kim, K.; Vöröslakos, M.; Seymour, J. P.; Wise, K. D.; Buzsáki, G.; Yoon, E. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Nat. Commun. 2020, 11, 2063.

    Article  CAS  Google Scholar 

  15. McCall, J. G.; Kim, T. I.; Shin, G.; Huang, X.; Jung, Y. H.; Al-Hasani, R.; Omenetto, F. G.; Bruchas, M. R.; Rogers, J. A. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat. Protocols 2013, 8, 2413–2428.

    Article  CAS  Google Scholar 

  16. Lee, H. E.; Choi, J. H.; Lee, S. H.; Jeong, M.; Shin, J. H.; Joe, D. J.; Kim, D. H.; Kim, C. W.; Park, J. H.; Lee, J. H. et al. Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical stimulator. Adv. Mater. 2018, 30, 1800649.

    Article  Google Scholar 

  17. Guo, Z. V.; Li, N.; Huber, D.; Ophir, E.; Gutnisky, D.; Ting, J. T.; Feng, G. P.; Svoboda, K. Flow of cortical activity underlying a tactile decision in mice. Neuron 2014, 81, 179–194.

    Article  CAS  Google Scholar 

  18. Packer, A. M.; Russell, L. E.; Dalgleish, H. W. P.; Hausser, M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 2015, 12, 140–146.

    Article  CAS  Google Scholar 

  19. Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336.

    Article  CAS  Google Scholar 

  20. Kim, S. H.; Jung, S.; Yoon, I. S.; Lee, C.; Oh, Y.; Hong, J. M. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics. Adv. Mater. 2018, 30, 1800109.

    Article  Google Scholar 

  21. Liu, Q. H.; Nian, G. D.; Yang, C. H.; Qu, S. X.; Suo, Z. G. Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 2018, 9, 846.

    Article  Google Scholar 

  22. Gan, D. L.; Xing, W. S.; Jiang, L. L.; Fang, J.; Zhao, C. C.; Ren, F. Z.; Fang, L. M.; Wang, K. F.; Lu, X. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat. Commun. 2019, 10, 1487.

    Article  Google Scholar 

  23. Yuk, H.; Zhang, T.; Lin, S. T.; Parada, G. A.; Zhao, X. H. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 2016, 15, 190–196.

    Article  CAS  Google Scholar 

  24. Gan, D. L.; Huang, Z. Q.; Wang, X.; Jiang, L. L.; Wang, C. M.; Zhu, M. Y.; Ren, F. Z.; Fang, L. M.; Wang, K. F.; Xie, C. M. et al. Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv. Funct. Mater. 2020, 30, 1907678.

    Article  CAS  Google Scholar 

  25. Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. G. Stretchable, transparent, ionic conductors. Science 2011, 341, 984–987.

    Article  Google Scholar 

  26. Shi, L.; Zhu, T. X.; Gao, G. X.; Zhang, X. Y.; Wei, W.; Liu, W. F.; Ding, S. J. Highly stretchable and transparent ionic conducting elastomers. Nat. Commun. 2018, 9, 2630.

    Article  Google Scholar 

  27. Qi, L. H.; Zhang, X.; Chong, W. C.; Li, P. A.; Lau, K. M. 848 ppi high-brightness active-matrix micro-LED micro-display using GaN-on-Si epi-wafers towards mass production. Opt. Express 2021, 29, 10580–10591.

    Article  Google Scholar 

  28. Sha, W.; Hua, Q. L.; Wang, J. W.; Cong, Z. F.; Cui, X.; Ji, K. Y.; Dai, X. H.; Wang, B. J.; Guo, W. B.; Hu, W. G. Enhanced photoluminescence of flexible InGaN/GaN multiple quantum wells on fabric by piezo-phototronic effect. ACS Appl. Mater. Interfaces 2022, 14, 3000–3007.

    Article  CAS  Google Scholar 

  29. Chen, J. W.; Wang, J. W.; Ji, K. Y.; Jiang, B.; Cui, X.; Sha, W.; Wang, B. J.; Dai, X. H.; Hua, Q. L.; Wan, L. Y. et al. Flexible, stretchable, and transparent InGaN/GaN multiple quantum wells/polyacrylamide hydrogel-based light emitting diodes. Nano Res. 2022, 15, 5492–5499.

    Article  CAS  Google Scholar 

  30. Lin, S. T.; Yuk, H.; Zhang, T.; Parada, G. A.; Koo, H.; Yu, C. J.; Zhao, X. H. Stretchable hydrogel electronics and devices. Adv. Mater. 2016, 28, 4497–4505.

    Article  CAS  Google Scholar 

  31. Liu, K. L.; Zhang, Z. X.; Li, J. Supramolecular hydrogels based on cyclodextrin-polymer polypseudorotaxanes: Materials design and hydrogel properties. Soft Matter 2011, 7, 11290–11297.

    Article  CAS  Google Scholar 

  32. Katsuno, C.; Konda, A.; Urayama, K.; Takigawa, T.; Kidowaki, M.; Ito, K. Pressure-responsive polymer membranes of slide-ring gels with movable cross-links. Adv. Mater. 2013, 25, 4636–640.

    Article  CAS  Google Scholar 

  33. Tan, S.; Ladewig, K.; Fu, Q.; Blencowe, A.; Qiao, G. G. Cyclodextrin-based supramolecular assemblies and hydrogels: Recent advances and future perspectives. Macromol. Rapid Commun. 2014, 35, 1166–1184.

    Article  CAS  Google Scholar 

  34. Ito, K. Slide-ring materials using cyclodextrin. Chem. Pharm. Bull. 2017, 65, 326–329.

    Article  CAS  Google Scholar 

  35. Mähler, J.; Persson, I. A study of the hydration of the alkali metal ions in aqueous solution. Inorg. Chem. 2012, 51, 425–438.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank for the support from the National Natural Science Foundation of China (Nos. 52173298, 61904012, and 52192611), the National Key R&D Program of China (No. 2021YFA1201603), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Niu, J., Sha, W. et al. Flexible high-resolution micro-LED display device with integrations of transparent, conductive, and highly elastic hydrogel. Nano Res. 16, 11893–11899 (2023). https://doi.org/10.1007/s12274-023-5731-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5731-x

Keywords

Navigation