Skip to main content
Log in

Solid electrolyte interphase on anodes in rechargeable lithium batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly safe and efficient rechargeable lithium batteries have become an indispensable component of the intelligent society powering smart electronics and electric vehicles. This review summarizes the formation principle, chemical compositions, and theoretical models of the solid electrolyte interphase (SEI) on the anode in the lithium battery, involving the functions and influences of the electroactive materials. The discrepancies of the SEI on different kinds of anode materials, as well as the choice and design of the electrolytes are detailedly clarified. Furthermore, the design strategies to obtain a stable and efficient SEI are outlined and discussed. Last but not least, the challenges and perspectives of artificial SEI technology are briefly proposed for the development of high-efficiency batteries in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288.

    Article  CAS  Google Scholar 

  2. Yan, C.; Xu, R.; Xiao, Y.; Ding, J. F.; Xu, L.; Li, B. Q.; Huang, J. Q. Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 2020, 30, 1909887.

    Article  CAS  Google Scholar 

  3. Zhu, Z.; Kushima, A.; Yin, Z. Y.; Qi, L.; Amine, K.; Lu, J.; Li, J. Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 2016, 1, 16111.

    Article  CAS  Google Scholar 

  4. Canepa, P.; Gautam, G. S.; Hannah, D. C.; Malik, R.; Liu, M.; Gallagher, K. G.; Persson, K. A.; Ceder, G. Odyssey of multivalent cathode materials: Open questions and future challenges. Chem. Rev. 2017, 117, 4287–4341.

    Article  CAS  Google Scholar 

  5. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047–2051.

    Article  CAS  Google Scholar 

  6. Meda, U. S.; Lal, L.; M, S.; Garg, P. Solid electrolyte interphase (SEI), a boon or a bane for lithium batteries: A review on the recent advances. J. Energy Storage 2022, 47, 103564.

    Article  Google Scholar 

  7. Suo, L. M.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X. L.; Luo, C.; Wang, C. S.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938–943.

    Article  CAS  Google Scholar 

  8. Suo, L. M.; Oh, D.; Lin, Y. X.; Zhuo, Z. Q.; Borodin, O.; Gao, T.; Wang, F.; Kushima, A.; Wang, Z. Q.; Kim, H. C. et al. How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 2017, 139, 18670–18680.

    Article  CAS  Google Scholar 

  9. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Article  CAS  Google Scholar 

  10. Zhang, H.; Qi, Y. B. Investigating lithium metal anodes with nonaqueous electrolytes for safe and high-performance batteries. Sustainable Energy Fuels 2022, 6, 954–970.

    Article  CAS  Google Scholar 

  11. Haruta, M.; Okubo, T.; Masuo, Y.; Yoshida, S.; Tomita, A.; Takenaka, T.; Doi, T.; Inaba, M. Temperature effects on SEI formation and cyclability of Si nanoflake powder anode in the presence of SEI-forming additives. Electrochim. Acta 2017, 224, 186–193.

    Article  CAS  Google Scholar 

  12. Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M. et al. Electrode degradation in lithium-ion batteries. ACS Nano 2020, 14, 1243–1295.

    Article  CAS  Google Scholar 

  13. Soto, F. A.; De La Hoz, J. M. M.; Seminario, J. M.; Balbuena, P. B. Modeling solid-electrolyte interfacial phenomena in silicon anodes. Curr. Opin. Chem. Eng. 2016, 13, 179–185.

    Article  Google Scholar 

  14. Zhang, S. S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources 2006, 162, 1379–1394.

    Article  CAS  Google Scholar 

  15. Zheng, Y.; Balbuena, P. B. Localized high concentration electrolytes decomposition under electron-rich environments. J. Chem. Phys. 2021, 154, 104702.

    Article  CAS  Google Scholar 

  16. Zhang, Y. N.; Jiang, F. L.; Bai, F.; Jiang, H.; Zhang, T. Sacrificial co-solvent electrolyte to construct a stable solid electrolyte interphase in lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2022, 14, 10327–10336.

    Article  CAS  Google Scholar 

  17. Wang, A. P.; Kadam, S.; Li, H.; Shi, S. Q.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithiumion batteries. NPJ Comput. Mater. 2018, 4, 15.

    Article  Google Scholar 

  18. Wang, J.; Yang, J.; Xiao, Q. B.; Zhang, J.; Li, T.; Jia, L. J.; Wang, Z. L.; Cheng, S.; Li, L. G.; Liu, M. N. et al. In situ self-assembly of ordered organic/inorganic dual-layered interphase for achieving long-life dendrite-free Li metal anodes in LiFSI-based electrolyte. Adv. Funct. Mater. 2021, 31, 2007434.

    Article  CAS  Google Scholar 

  19. Peled, E.; Menkin, S. Review—SEI: Past, present and future. J. Electrochem. Soc. 2017, 164, A1703–A1719.

    Article  CAS  Google Scholar 

  20. Lang, S. Y.; Shen, Z. Z.; Hu, X. C.; Shi, Y.; Guo, Y. G.; Jia, F. F.; Wang, F. Y.; Wen, R.; Wan, L. J. Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode. Nano Energy 2020, 75, 104967.

    Article  CAS  Google Scholar 

  21. Dupré, N.; Moreau, P.; De Vito, E.; Quazuguel, L.; Boniface, M.; Bordes, A.; Rudisch, C.; Bayle-Guillemaud, P.; Guyomard, D. Multiprobe study of the solid electrolyte interphase on silicon-based electrodes in full-cell configuration. Chem. Mater. 2016, 28, 2557–2572.

    Article  Google Scholar 

  22. Rikka, V. R.; Sahu, S. R.; Chatterjee, A.; Gopalan, R.; Sundararajan, G.; Prakash, R. Composition-dependent long-term stability of mosaic solid-electrolyte interface for long-life lithiumion battery. Batteries Supercaps 2021, 4, 1720–1730.

    Article  Google Scholar 

  23. Dey, A. N.; Sullivan, B. P. The electrochemical decomposition of propylene carbonate on graphite. J. Electrochem. Soc. 1970, 117, 222–224.

    Article  CAS  Google Scholar 

  24. Peled, E. Film forming reaction at the lithium/electrolyte interface. J. Power Sources 1983, 9, 253–266.

    Article  CAS  Google Scholar 

  25. Nazri, G.; Muller, R. H. Composition of surface layers on Li electrodes in PC, LiClO4 of very low water content. J. Electrochem. Soc. 1985, 132, 2050–2054.

    Article  CAS  Google Scholar 

  26. Aurbach, D.; Daroux, M. L.; Faguy, P. W.; Yeager, E. Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 1987, 134, 1611–1620.

    Article  CAS  Google Scholar 

  27. Fong, R.; Von Sacken, U.; Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 1990, 137, 2009–2013.

    Article  CAS  Google Scholar 

  28. Kanamura, K.; Tamura, H.; Shiraishi, S.; Takehara, Z. I. XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4. J. Electrochem. Soc. 1995, 142, 340–347.

    Article  CAS  Google Scholar 

  29. Peled, E.; Golodnitsky, D.; Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144, L208–L210.

    Article  CAS  Google Scholar 

  30. Aurbach, D.; Markovsky, B.; Levi, M. D.; Levi, E.; Schechter, A.; Moshkovich, M.; Cohen, Y. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J. Power Sources 1999, 81–82, 95–111.

    Article  Google Scholar 

  31. Christensen, J.; Newman, J. A mathematical model for the lithiumion negative electrode solid electrolyte interphase. J. Electrochem. Soc. 2004, 151, A1977–A1988.

    Article  CAS  Google Scholar 

  32. Edström, K.; Herstedt, M.; Abraham, D. P. A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. J. Power Sources 2006, 153, 380–384.

    Article  Google Scholar 

  33. Shi, S. Q.; Lu, P.; Liu, Z. Y.; Qi, Y.; Hector, L. G. Jr.; Li, H.; Harris, S. J. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 2012, 134, 15476–15487.

    Article  CAS  Google Scholar 

  34. Zheng, J. Y.; Zheng, H.; Wang, R.; Ben, L. B.; Lu, W.; Chen, L. W.; Chen, L. Q.; Li, H. 3D visualization of inhomogeneous multi-layered structure and Young’s modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 13229–13238.

    Article  CAS  Google Scholar 

  35. Li, Y. Z.; Li, Y. B.; Pei, A.; Yan, K.; Sun, Y. M.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017, 358, 506–510.

    Article  CAS  Google Scholar 

  36. Hou, C.; Han, J. H.; Liu, P.; Yang, C. C.; Huang, G.; Fujita, T.; Hirata, A.; Chen, M. W. Operando observations of SEI film evolution by mass-sensitive scanning transmission electron microscopy. Adv. Energy Mater. 2019, 9, 1902675.

    Article  CAS  Google Scholar 

  37. Kanamura, K.; Shiraishi, S.; Takehara, Z. I. Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF. J. Electrochem. Soc. 1996, 143, 2187–2197.

    Article  CAS  Google Scholar 

  38. Zheng, J. H.; Ju, Z. J.; Zhang, B. L.; Nai, J. W.; Liu, T. F.; Liu, Y. J.; Xie, Q. F.; Zhang, W. K.; Wang, Y.; Tao, X. Y. Lithium ion diffusion mechanism on the inorganic components of the solid-electrolyte interphase. J. Mater. Chem. A 2021, 9, 10251–10259.

    Article  CAS  Google Scholar 

  39. Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H. H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C. et al. Electrode-electrolyte interface in Li-ion batteries: Current understanding and new insights. J. Phys. Chem. Lett. 2015, 6, 4653–4672.

    Article  CAS  Google Scholar 

  40. Zhang, J. G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 2020, 120, 13312–13348.

    Article  CAS  Google Scholar 

  41. Huang, W.; Attia, P. M.; Wang, H. S.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z. W.; Boyle, D. T.; Li, Y. Z.; Bazant, M. Z. et al. Evolution of the solid-electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy. Nano Lett. 2019, 19, 5140–5148.

    Article  CAS  Google Scholar 

  42. Wu, H. P.; Jia, H.; Wang, C. M.; Zhang, J. G.; Xu, W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 2021, 11, 2003092.

    Article  CAS  Google Scholar 

  43. Zhou, Y. F.; Su, M.; Yu, X. F.; Zhang, Y. Y.; Wang, J. G.; Ren, X. D.; Cao, R. G.; Xu, W.; Baer, D. R.; Du, Y. G. et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 2020, 15, 224–230.

    Article  CAS  Google Scholar 

  44. Cheng, X. B.; Yan, C.; Zhang, X. Q.; Liu, H.; Zhang, Q. Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett. 2018, 3, 1564–1570.

    Article  CAS  Google Scholar 

  45. Sun, S. Y.; Yao, N.; Jin, C. B.; Xie, J.; Li, X. Y.; Zhou, M. Y.; Chen, X.; Li, B. Q.; Zhang, X. Q.; Zhang, Q. The crucial role of electrode potential of a working anode in dictating the structural evolution of solid electrolyte interphase. Angew. Chem., Int. Ed. 2022, 61, e202208743.

    Article  CAS  Google Scholar 

  46. Xu, Y. B.; He, Y.; Wu, H. P.; Xu, W.; Wang, C. M. Atomic structure of electrochemically deposited lithium metal and its solid electrolyte interphases revealed by cryo-electron microscopy. Microsc. Microanal. 2019, 25, 2220–2221.

    Article  Google Scholar 

  47. Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy Fuels 2020, 4, 5387–5416.

    Article  CAS  Google Scholar 

  48. Bhandari, A.; Peng, C.; Dziedzic, J.; Owen, J. R.; Kramer, D.; Skylaris, C. K. Li nucleation on the graphite anode under potential control in Li-ion batteries. J. Mater. Chem. A 2022, 10, 11426–11436.

    Article  CAS  Google Scholar 

  49. Ehteshami, N.; Ibing, L.; Stolz, L.; Winter, M.; Paillard, E. Ethylene carbonate-free electrolytes for Li-ion battery: Study of the solid electrolyte interphases formed on graphite anodes. J. Power Sources 2020, 451, 227804.

    Article  CAS  Google Scholar 

  50. Heng, S.; Shan, X. J.; Wang, W.; Wang, Y.; Zhu, G. B.; Qu, Q. T.; Zheng, H. H. Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries. Carbon 2020, 159, 390–400.

    Article  CAS  Google Scholar 

  51. Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281.

    Article  CAS  Google Scholar 

  52. Zhang, H. L.; Liu, S. H.; Li, F.; Bai, S.; Liu, C.; Tan, J.; Cheng, H. M. Electrochemical performance of pyrolytic carbon-coated natural graphite spheres. Carbon 2006, 44, 2212–2218.

    Article  CAS  Google Scholar 

  53. Yu, P.; Ritter, J. A.; White, R. E.; Popov, B. N. Ni-composite microencapsulated graphite as the negative electrode in lithium-ion batteries I. Initial irreversible capacity study. J. Electrochem. Soc. 2000, 147, 1280–1285.

    Article  CAS  Google Scholar 

  54. Kottegoda, I. R. M.; Kadoma, Y.; Ikuta, H.; Uchimoto, Y.; Wakihara, M. Enhancement of rate capability in graphite anode by surface modification with zirconia. Electrochem. Solid-State Lett. 2002, 5, A275–A278.

    Article  CAS  Google Scholar 

  55. Seo, J.; Hyun, S.; Moon, J.; Lee, J. Y.; Kim, C. High performance of a polydopamine-coated graphite anode with a stable SEI layer. ACS Appl. Energy Mater. 2022, 5, 5610–5616.

    Article  CAS  Google Scholar 

  56. Song, D.; Jo, M. R.; Lee, G. H.; Song, J.; Choi, N. S.; Kang, Y. M. Bifunctional Li4Ti5O12 coating layer for the enhanced kinetics and stability of carbon anode for lithium rechargeable batteries. J. Alloys Compd. 2014, 615, 220–226.

    Article  CAS  Google Scholar 

  57. Nasara, R. N.; Ma, W.; Tsujimoto, S.; Inoue, Y.; Yokoyama, Y.; Kondo, Y.; Miyazaki, K.; Miyahara, Y.; Fukutsuka, T.; Lin, S. K. et al. Electrochemical properties of surface-modified hard carbon electrodes for lithium-ion batteries. Electrochim. Acta 2021, 379, 138175.

    Article  CAS  Google Scholar 

  58. Song, M. S.; Kim, R. H.; Baek, S. W.; Lee, K. S.; Park, K.; Benayad, A. Is Li4Ti5O12 a solid-electrolyte-interphase-free electrode material in Li-ion batteries? Reactivity between the Li4Ti5O12 electrode and electrolyte. J. Mater. Chem. A 2014, 2, 631–636.

    Article  CAS  Google Scholar 

  59. Chen, Y.; Pan, H. D.; Lin, C.; Li, J. X.; Cai, R. S.; Haigh, S. J.; Zhao, G. Y.; Zhang, J. M.; Lin, Y. B.; Kolosov, O. V. et al. Controlling interfacial reduction kinetics and suppressing electrochemical oscillations in Li4Ti5O12 thin-film anodes. Adv. Funct. Mater. 2021, 31, 2105354.

    Article  CAS  Google Scholar 

  60. Yi, T. F.; Shu, J.; Zhu, Y. R.; Zhu, X. D.; Yue, C. B.; Zhou, A. N.; Zhu, R. S. High-performance Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) as an anode material for secondary lithium-ion battery. Electrochim. Acta 2009, 54, 7464–7470.

    Article  CAS  Google Scholar 

  61. Yi, T. F.; Shu, J.; Zhu, Y. R.; Zhu, X. D.; Zhu, R. S.; Zhou, A. N. Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to 0 V. J. Power Sources 2010, 195, 285–288.

    Article  CAS  Google Scholar 

  62. He, Y. B.; Ning, F.; Li, B. H.; Song, Q. S.; Lv, W.; Du, H. D.; Zhai, D. Y.; Su, F. Y.; Yang, Q. H.; Kang, F. Y. Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. J. Power Sources 2012, 202, 253–261.

    Article  CAS  Google Scholar 

  63. Du, A. M.; Li, H.; Chen, X. W.; Han, Y. Y.; Zhu, Z. P.; Chu, C. C. Recent research progress of silicon-based anode materials for lithium-ion batteries. ChemistrySelect 2022, 7, e202201269.

    Article  CAS  Google Scholar 

  64. Wang, W. L.; Wang, Y.; Yuan, L. X.; You, C. L.; Wu, J. W.; Liu, L. L.; Ye, J. L.; Wu, Y. L.; Fu, L. J. Recent advances in modification strategies of silicon-based lithium-ion batteries. Nano Res. 2023, 16, 3781–3803.

    Article  CAS  Google Scholar 

  65. Corsi, J. S.; Welborn, S. S.; Stach, E. A.; Detsi, E. Insights into the degradation mechanism of nanoporous alloy-type Li-ion battery anodes. ACS Energy Lett. 2021, 6, 1749–1756.

    Article  CAS  Google Scholar 

  66. Haruta, M.; Kijima, Y.; Hioki, R.; Doi, T.; Inaba, M. Artificial lithium fluoride surface coating on silicon negative electrodes for the inhibition of electrolyte decomposition in lithium-ion batteries: Visualization of a solid electrolyte interphase using in situ AFM. Nanoscale 2018, 10, 17257–17264.

    Article  CAS  Google Scholar 

  67. Yang, Y.; Wang, Z. X.; Zhou, R.; Guo, H. J.; Li, X. H. Effects of lithium fluoride coating on the performance of nano-silicon as anode material for lithium-ion batteries. Mater. Lett. 2016, 184, 65–68.

    Article  CAS  Google Scholar 

  68. Li, J. C.; Xiao, X. C.; Cheng, Y. T.; Verbrugge, M. W. Atomic layered coating enabling ultrafast surface kinetics at silicon electrodes in lithium ion batteries. J. Phys. Chem. Lett. 2013, 4, 3387–3391.

    Article  CAS  Google Scholar 

  69. Jiménez, A. R.; Nölle, R.; Wagner, R.; Hüsker, J.; Kolek, M.; Schmuch, R.; Winter, M.; Placke, T. A step towards understanding the beneficial influence of a LIPON-based artificial SEI on silicon thin film anodes in lithium-ion batteries. Nanoscale 2018, 10, 2128–2137.

    Article  Google Scholar 

  70. Li, J. C.; Dudney, N. J.; Nanda, J.; Liang, C. D. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl. Mater. Interfaces 2014, 6, 10083–10088.

    Article  CAS  Google Scholar 

  71. Jiang, C. L.; Xiang, L.; Miao, S. J.; Shi, L.; Xie, D. H.; Yan, J. X.; Zheng, Z. J.; Zhang, X. M.; Tang, Y. B. Flexible interface design for stress regulation of a silicon anode toward highly stable dualion batteries. Adv. Mater. 2020, 32, 1908470.

    Article  CAS  Google Scholar 

  72. Wang, M. S.; Wang, G. L.; Wang, S.; Zhang, J.; Wang, J.; Zhong, W.; Tang, F.; Yang, Z. L.; Zheng, J. M.; Li, X. In situ catalytic growth 3D multi-layers graphene sheets coated nano-silicon anode for high performance lithium-ion batteries. Chem. Eng. J. 2019, 356, 895–903.

    Article  CAS  Google Scholar 

  73. Wu, H.; Zheng, G. Y.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 2012, 12, 904–909.

    Article  CAS  Google Scholar 

  74. Chen, S. Q.; Shen, L. F.; Van Aken, P. A.; Maier, J.; Yu, Y. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv. Mater. 2017, 29, 1605650.

    Article  Google Scholar 

  75. Jin, Y. T.; Kneusels, N. J. H.; Marbella, L. E.; Castillo-Martínez, E.; Magusin, P. C. M. M.; Weatherup, R. S.; Jónsson, E.; Liu, T.; Paul, S.; Grey, C. P. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. J. Am. Chem. Soc. 2018, 140, 9854–9867.

    Article  CAS  Google Scholar 

  76. Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid—electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.

    Article  CAS  Google Scholar 

  77. Yu, S. H.; Lee, S. H.; Lee, D. J.; Sung, Y. E.; Hyeon, T. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 2016, 12, 2146–2172.

    Article  CAS  Google Scholar 

  78. Fang, S.; Bresser, D.; Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485.

    Article  CAS  Google Scholar 

  79. Malini, R.; Uma, U.; Sheela, T.; Ganesan, M.; Renganathan, N. G. Conversion reactions: A new pathway to realise energy in lithiumion battery—Review. Ionics 2009, 15, 301–307.

    Article  CAS  Google Scholar 

  80. Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.

    Article  CAS  Google Scholar 

  81. Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J. M. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 2002, 142, A627–A634.

    Article  Google Scholar 

  82. Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M. An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci. 2003, 5, 895–904.

    Article  CAS  Google Scholar 

  83. Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.

    Article  CAS  Google Scholar 

  84. Wang, X. H.; Li, X. W.; Sun, X. L.; Li, F.; Liu, Q. M.; Wang, Q.; He, D. Y. Nanostructured NiO electrode for high rate Li-ion batteries. J. Mater. Chem. 2011, 21, 3571–3573.

    Article  CAS  Google Scholar 

  85. Wang, X. H.; Yang, Z. B.; Sun, X. L.; Li, X. W.; Wang, D. S.; Wang, P.; He, D. Y. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. J. Mater. Chem. 2011, 21, 9988–9990.

    Article  CAS  Google Scholar 

  86. Wang, S. Q.; Zhang, J. Y.; Chen, C. H. Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries. Scr. Mater. 2007, 57, 337–340.

    Article  CAS  Google Scholar 

  87. Park, J. C.; Kim, J.; Kwon, H.; Song, H. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater. 2009, 21, 803–807.

    Article  CAS  Google Scholar 

  88. Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M. H. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. ACS Appl. Mater. Interfaces 2014, 6, 2051–2058.

    Article  CAS  Google Scholar 

  89. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Article  CAS  Google Scholar 

  90. Li, Q.; Li, H. S.; Xia, Q. T.; Hu, Z. Q.; Zhu, Y.; Yan, S. S.; Ge, C.; Zhang, Q. H.; Wang, X. X.; Shang, X. T. et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 2021, 20, 76–83.

    Article  Google Scholar 

  91. Zeng, Z. P.; Zhao, H. L.; Lv, P. P.; Zhang, Z. J.; Wang, J.; Xia, Q. Electrochemical properties of iron oxides/carbon nanotubes as anode material for lithium ion batteries. J. Power Sources 2015, 274, 1091–1099.

    Article  CAS  Google Scholar 

  92. Fang, J. B.; Ren, Q.; Liu, C.; Chen, J. A.; Wu, D.; Li, A. D. Realizing the enhanced cyclability of a cactus-like NiCo2O4 nanocrystal anode fabricated by molecular layer deposition. Dalton Trans. 2021, 50, 511–519.

    Article  CAS  Google Scholar 

  93. Guo, A. P.; Zhao, J. K.; Yang, K. M.; Xie, M. Z.; Wang, Z. L.; Yang, X. J. Design and synthesis of NiCo-NiCoO2@C composites with improved lithium storage performance as the anode materials. J. Colloid Interface Sci. 2023, 631, 112–121.

    Article  CAS  Google Scholar 

  94. Feng, J. W.; Hu, S. G.; Han, B.; Xiao, Y. L.; Deng, Y. H.; Wang, C. Y. Research progress of electrolyte optimization for lithium metal batteries. Energy Storage Sci. Technol. 2020, 9, 1629–1640.

    Google Scholar 

  95. Lucero, N.; Vilcarino, D.; Datta, D.; Zhao, M. Q. The roles of MXenes in developing advanced lithium metal anodes. J. Energy Chem. 2022, 69, 132–149.

    Article  CAS  Google Scholar 

  96. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    Article  CAS  Google Scholar 

  97. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    Article  CAS  Google Scholar 

  98. Li, W. J.; Zheng, H.; Chu, G.; Luo, F.; Zheng, J. Y.; Xiao, D. D.; Li, X.; Gu, L.; Li, H.; Wei, X. L. et al. Effect of electrochemical dissolution and deposition order on lithium dendrite formation: A top view investigation. Faraday Discuss. 2014, 176, 109–124.

    Article  CAS  Google Scholar 

  99. Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

    Article  CAS  Google Scholar 

  100. Bai, M. H.; Xie, K. Y.; Hong, B.; Yuan, K.; Li, Z. H.; Huang, Z. M.; Shen, C.; Lai, Y. Q. An artificial Li3PO4 solid electrolyte interphase layer to achieve petal-shaped deposition of lithium. Solid State Ion. 2019, 333, 101–104.

    Article  CAS  Google Scholar 

  101. Cao, W. Z.; Chen, W. M.; Lu, M.; Zhang, C.; Tian, D.; Wang, L.; Yu, F. Q. In situ generation of Li3N concentration gradient in 3D carbon-based lithium anodes towards highly-stable lithium metal batteries. J. Energy Chem. 2023, 76, 648–656.

    Article  CAS  Google Scholar 

  102. Wang, L. P.; Zhang, L.; Wang, Q. J.; Li, W. J.; Wu, B.; Jia, W. S.; Wang, Y. H.; Li, J. Z.; Li, H. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Stor. Mater. 2018, 10, 16–23.

    CAS  Google Scholar 

  103. Nan, Y.; Li, S. M.; Zhu, M. Q.; Li, B.; Yang, S. B. Endowing the lithium metal surface with self-healing property via an in situ gas—solid reaction for high-performance lithium metal batteries. ACS Appl. Mater. Interfaces 2019, 11, 28878–28884.

    Article  CAS  Google Scholar 

  104. Umeda, G. A.; Menke, E.; Richard, M.; Stamm, K. L.; Wudl, F.; Dunn, B. Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem. 2011, 21, 1593–1599.

    Article  CAS  Google Scholar 

  105. Wang, G.; Chen, C.; Chen, Y. H.; Kang, X. W.; Yang, C. H.; Wang, F.; Liu, Y.; Xiong, X. H. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahighrate and large-capacity lithium-metal anode. Angew. Chem., Int. Ed. 2020, 59, 2055–2060.

    Article  CAS  Google Scholar 

  106. Feng, Y. Y.; Zhang, C. F.; Jiao, X. X.; Zhou, Z. X.; Song, J. X. Highly stable lithium metal anode with near-zero volume change enabled by capped 3D lithophilic framework. Energy Storage Mater. 2020, 25, 172–179.

    Article  Google Scholar 

  107. Chen, D. D.; Huang, S.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Meng, Y. Z. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture. Adv. Funct. Mater. 2020, 30, 1907717.

    Article  CAS  Google Scholar 

  108. Meng, Q. Q.; Zhang, H. M.; Liu, Y.; Huang, S. B.; Zhou, T. Z.; Yang, X. F.; Wang, B. Y.; Zhang, W. F.; Ming, H.; Xiang, Y. et al. A scalable bio-inspired polydopamine-Cu ion interfacial layer for high-performance lithium metal anode. Nano Res. 2019, 12, 2919–2924.

    Article  CAS  Google Scholar 

  109. Yan, C.; Li, H. R.; Chen, X.; Zhang, X. Q.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Zhang, Q. Regulating the inner helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 2019, 141, 9422–9429.

    Article  CAS  Google Scholar 

  110. Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Wu, F.; Chaudhary, A.; Ghimire, N.; Zhou, B.; Zhang, W. H. et al. Ultrathin bilayer of graphite/SiO2 as solid interface for reviving Li metal anode. Adv. Energy Mater. 2019, 9, 1901486.

    Article  Google Scholar 

  111. Li, Y. Z.; Huang, W.; Li, Y. B.; Pei, A.; Boyle, D. T.; Cui, Y. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2018, 2, 2167–2177.

    Article  CAS  Google Scholar 

  112. Ishikawa, M.; Morita, M. Current issues of metallic lithium anode. In Lithium Batteries: Science and Technology. Nazri, G. A.; Pistoia, G., Eds.; Springer: Boston, 2003; pp 297–312.

    Chapter  Google Scholar 

  113. Guo, J.; Wen, Z. Y.; Wu, M. F.; Jin, J.; Liu, Y. Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem. Commun. 2015, 51, 59–63.

    Article  CAS  Google Scholar 

  114. Heiskanen, S. K.; Kim, J.; Lucht, B. L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 2019, 3, 2322–2333.

    Article  CAS  Google Scholar 

  115. Yang, Z.; Jiang, M. X.; Cui, C.; Wang, Y. X.; Qin, J. W.; Wang, J.; Wang, Y. X. J.; Mao, B. G.; Cao, M. H. In-situ cross-linking strategy for stabilizing the LEDC of the solid-electrolyte interphase in lithium-ion batteries. Nano Energy 2023, 105, 107993.

    Article  CAS  Google Scholar 

  116. Peled, E.; Tow, D. B.; Merson, A.; Gladkich, A.; Burstein, L.; Golodnitsky, D. Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J. Power Sources 2001, 97-98, 52–57.

    Article  Google Scholar 

  117. Mauger, A.; Julien, C. M.; Paolella, A.; Armand, M.; Zaghib, K. A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives. Mater. Sci. Eng. R Rep. 2018, 134, 1–21.

    Article  Google Scholar 

  118. Kondou, S.; Watanabe, Y.; Dokko, K.; Watanabe, M.; Ueno, K. Electrochemical pretreatment of solid-electrolyte interphase formation for enhanced Li4Ti5O12 anode performance in a molten Li-Ca binary salt hydrate electrolyte. ChemElectroChem 2022, 9, e202200061.

    Article  CAS  Google Scholar 

  119. Liu, S.; Zhang, Q. K.; Wang, X. S.; Xu, M. Q.; Li, W. S.; Lucht, B. L. LiFSI and LiDFBOP dual-salt electrolyte reinforces the solid electrolyte interphase on a lithium metal anode. ACS Appl. Mater. Interfaces 2020, 12, 33719–33728.

    Article  CAS  Google Scholar 

  120. Kuai, D. C.; Balbuena, P. B. Inorganic solid electrolyte interphase engineering rationales inspired by hexafluorophosphate decomposition mechanisms. J. Phys. Chem. C 2033, 127, 1744–1751.

    Article  Google Scholar 

  121. Yang, C. R.; Wang, Y. Y.; Wan, C. C. Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte. J. Power Sources 1998, 72, 66–70.

    Article  CAS  Google Scholar 

  122. Schmitz, R. W.; Murmann, P.; Schmitz, R.; Müller, R.; Krämer, L.; Kasnatscheew, J.; Isken, P.; Niehoff, P.; Nowak, S.; Röschenthaler, G. V. et al. Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods. Prog. Solid State Chem. 2014, 42, 65–84.

    Article  CAS  Google Scholar 

  123. Shen, C.; Wang, S. W.; Jin, Y.; Han, W. Q. In situ AFM imaging of solid electrolyte interfaces on HOPG with ethylene carbonate and fluoroethylene carbonate-based electrolytes. ACS Appl. Mater. Interfaces 2015, 7, 25441–25447.

    Article  CAS  Google Scholar 

  124. Mosallanejad, B.; Malek, S. S.; Ershadi, M.; Sharifi, H.; Daryakenari, A. A.; Ajdari, F. B.; Ramakrishna, S. Insights into the efficient roles of solid electrolyte interphase derived from vinylene carbonate additive in rechargeable batteries. J. Electroanal. Chem. 2022, 909, 116126.

    Article  CAS  Google Scholar 

  125. Qian, J. F.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Henderson, W. A.; Zhang, Y. H.; Zhang, J. G. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 2015, 15, 135–144.

    Article  CAS  Google Scholar 

  126. Zhang, Y. H.; Qian, J. F.; Xu, W.; Russell, S. M.; Chen, X. L.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D. H.; Cao, R. G. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 2014, 14, 6889–6896.

    Article  CAS  Google Scholar 

  127. Li, S.; Dai, H. L.; Li, Y. H.; Lai, C.; Wang, J. L.; Huo, F. W.; Wang, C. Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery. Energy Stor. Mater. 2019, 18, 222–228.

    Google Scholar 

  128. Ma, Y. L.; Zhou, Z. X.; Li, C. J.; Wang, L.; Wang, Y.; Cheng, X. Q.; Zuo, P. J.; Du, C. Y.; Huo, H.; Gao, Y. Z. et al. Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. Energy Stor. Mater. 2018, 11, 197–204.

    Google Scholar 

  129. Wu, L. N.; Peng, J.; Sun, Y. K.; Han, F. M.; Wen, Y. F.; Shi, C. G.; Fan, J. J.; Huang, L.; Li, J. T.; Sun, S. G. High-energy density Li metal dual-ion battery with a lithium nitrate-modified carbonate-based electrolyte. ACS Appl. Mater. Interfaces 2019, 11, 18504–18510.

    Article  CAS  Google Scholar 

  130. Tan, J.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 2021, 11, 2100046.

    Article  CAS  Google Scholar 

  131. Zhang, H. C.; Luo, J. R.; Qi, M.; Lin, S. R.; Dong, Q.; Li, H. Y.; Dulock, N.; Povinelli, C.; Wong, N.; Fan, W. et al. Enabling lithium metal anode in nonflammable phosphate electrolyte with electrochemically induced chemical reactions. Angew. Chem., Int. Ed. 2021, 60, 19183–19190.

    Article  CAS  Google Scholar 

  132. Wang, Q.; Yang, C. K.; Yang, J. J.; Wu, K.; Hu, C. J.; Lu, J.; Liu, W.; Sun, X. M.; Qiu, J. Y.; Zhou, H. H. Dendrite-free lithium deposition via a superfilling mechanism for high-performance Li-metal batteries. Adv. Mater. 2019, 31, 1903248.

    Article  CAS  Google Scholar 

  133. Wang, H. P.; He, J.; Liu, J. D.; Qi, S. H.; Wu, M. G.; Wen, J.; Chen, Y. N.; Feng, Y. Z.; Ma, J. M. Electrolytes enriched by crown ethers for lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2002578.

    Article  CAS  Google Scholar 

  134. Wu, J. Y.; Li, X. W.; Rao, Z. X.; Xu, X. N.; Cheng, Z. X.; Liao, Y. Q.; Yuan, L. X.; Xie, X. L.; Li, Z.; Huang, Y. H. Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy 2020, 72, 104725.

    Article  CAS  Google Scholar 

  135. Qi, S. H.; Liu, J. D.; He, J.; Wang, H. P.; Wu, M. G.; Wu, D. X.; Huang, J. D.; Li, F.; Li, X.; Ren, Y. R. et al. Structurally tunable characteristics of ionic liquids for optimizing lithium plating/stripping via electrolyte engineering. J. Energy Chem. 2021, 63, 270–277.

    Article  CAS  Google Scholar 

  136. Beheshti, S. H.; Javanbakht, M.; Omidvar, H.; Hosen, S.; Hubin, A.; Van Mierlo, J.; Berecibar, M. Development, retainment, and assessment of the graphite-electrolyte interphase in Li-ion batteries regarding the functionality of SEI-forming additives. iScience 2022, 25, 103862.

    Article  CAS  Google Scholar 

  137. Chen, G. Y.; Zhuang, G. V.; Richardson, T. J.; Liu, G.; Ross, P. N. Jr. Anodic polymerization of vinyl ethylene carbonate in Li-ion battery electrolyte. Electrochem. Solid-State Lett. 2005, 8, A344–A347.

    Article  CAS  Google Scholar 

  138. Ota, H.; Sakata, Y.; Otake, Y.; Shima, K.; Ue, M.; Yamaki, J. I. Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte. J. Electrochem. Soc. 2004, 151, A1778–A1788.

    Article  CAS  Google Scholar 

  139. Mogi, R.; Inaba, M.; Jeong, S. K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 2002, 149, A1578–A1583.

    Article  CAS  Google Scholar 

  140. Yang, Y.; Xiong, J.; Lai, S. B.; Zhou, R.; Zhao, M.; Geng, H. B.; Zhang, Y. F.; Fang, Y. X.; Li, C. C.; Zhao, J. B. Vinyl ethylene carbonate as an effective SEI-forming additive in carbonate-based electrolyte for lithium-metal anodes. ACS Appl. Mater. Interfaces 2019, 11, 6118–6125.

    Article  CAS  Google Scholar 

  141. Lee, J. T.; Lin, Y. W.; Jan, Y. S. Allyl ethyl carbonate as an additive for lithium-ion battery electrolytes. J. Power Sources 2004, 132, 244–248.

    Article  CAS  Google Scholar 

  142. Liang, Y. R.; Xiao, Y.; Yan, C.; Xu, R.; Ding, J. F.; Liang, J.; Peng, H. J.; Yuan, H.; Huang, J. Q. A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes. J. Energy Chem. 2020, 48, 203–207.

    Article  Google Scholar 

  143. Abe, K.; Yoshitake, H.; Kitakura, T.; Hattori, T.; Wang, H. Y.; Yoshio, M. Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochim. Acta 2004, 49, 4613–4622.

    Article  CAS  Google Scholar 

  144. Santner, H. J.; Möller, K. C.; Ivančo, J.; Ramsey, M. G.; Netzer, F. P.; Yamaguchi, S.; Besenhard, J. O.; Winter, M. Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups. J. Power Sources 2003, 119-121, 368–372.

    Article  Google Scholar 

  145. Komaba, S.; Itabashi, T.; Ohtsuka, T.; Groult, H.; Kumagai, N.; Kaplan, B.; Yashiro, H. Impact of 2-vinylpyridine as electrolyte additive on surface and electrochemistry of graphite for C/LiMn2O4 Li-ion cells. J. Electrochem. Soc. 2005, 152, A937–A946.

    Article  CAS  Google Scholar 

  146. Ufheil, J.; Baertsch, M. C.; Würsig, A.; Novák, P. Maleic anhydride as an additive to γ-butyrolactone solutions for Li-ion batteries. Electrochim. Acta 2005, 50, 1733–1738.

    Article  CAS  Google Scholar 

  147. Ein-Eli, Y.; Thomas, S. R.; Koch, V. R. New electrolyte system for Li-ion battery. J. Electrochem. Soc. 1996, 143, L195–L197.

    Article  CAS  Google Scholar 

  148. Ein-Eli, Y. Dithiocarbonic anhydride (CS2)—A new additive in Li-ion battery electrolytes. J. Electroanal. Chem. 2002, 531, 95–99.

    Article  CAS  Google Scholar 

  149. Wagner, M. W.; Liebenow, C.; Besenhard, J. O. Effect of polysulfide-containing electrolyte on the film formation of the negative electrode. J. Power Sources 1997, 68, 328–332.

    Article  CAS  Google Scholar 

  150. Wrodnigg, G. H.; Besenhard, J. O.; Winter, M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. J. Electrochem. Soc. 1999, 146, 470–472.

    Article  CAS  Google Scholar 

  151. Wrodnigg, G. H.; Wrodnigg, T. M.; Besenhard, J. O.; Winter, M. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochem. Commun. 1999, 1, 148–150.

    Article  CAS  Google Scholar 

  152. Wrodnigg, G. H.; Besenhard, J. O.; Winter, M. Cyclic and acyclic sulfites: New solvents and electrolyte additives for lithium ion batteries with graphitic anodes?. J. Power Sources 2001, 27-28, 592–594.

    Article  Google Scholar 

  153. Lau, J.; DeBlock, R. H.; Butts, D. M.; Ashby, D. S.; Choi, C. S.; Dunn, B. S. Sulfide solid electrolytes for lithium battery applications. Adv. Energy Mater. 2018, 8, 1800933.

    Article  Google Scholar 

  154. Besenhard, J. O.; Wagner, M. W.; Winter, M.; Jannakoudakis, A. D.; Jannakoudakis, P. D.; Theodoridou, E. Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes. J. Power Sources 1993, 44, 413–420.

    Article  CAS  Google Scholar 

  155. Gan, H.; Takeuchi, E. S. Phosphonate additives for nonaqueous electrolyte in rechargeable electrochemical cells. U.S. Patent 6,495,285, December 17, 2002.

  156. Shu, Z. X.; McMillan, R. S.; Murray, J. J.; Davidson, I. J. Use of chloroethylene carbonate as an electrolyte solvent for a lithium ion battery containing a graphitic anode. J. Electrochem. Soc. 1995, 142, L161–L162.

    Article  CAS  Google Scholar 

  157. McMillan, R.; Slegr, H.; Shu, Z. X.; Wang, W. D. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources 1999, 81-82, 20–26.

    Article  Google Scholar 

  158. Simon, B.; Boeuve, J. P.; Broussely, M. Electrochemical study of the passivating layer on lithium intercalated carbon electrodes in nonaqueous solvents. J. Power Sources 1993, 43, 65–74.

    Article  CAS  Google Scholar 

  159. Osaka, T.; Momma, T.; Matsumoto, Y.; Uchida, Y. Effect of carbon dioxide on lithium anode cycleability with various substrates. J. Power Sources 1997, 68, 497–500.

    Article  CAS  Google Scholar 

  160. Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 2002, 148, 405–416.

    Article  CAS  Google Scholar 

  161. Gan, H.; Takeuchi, E. S. Lithium electrodes with and without CO2 treatment: Electrochemical behavior and effect on high rate lithium battery performance. J. Power Sources 1996, 62, 45–50.

    Article  CAS  Google Scholar 

  162. Lee, J. T.; Wu, M. S.; Wang, F. M.; Lin, Y. W.; Bai, M. Y.; Chiang, P. C. J. Effects of aromatic esters as propylene carbonate-based electrolyte additives in lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A1837–A1843.

    Article  CAS  Google Scholar 

  163. Wang, C. X.; Nakamura, H.; Komatsu, H.; Yoshio, M.; Yoshitake, H. Electrochemical behaviour of a graphite electrode in propylene carbonate and 1, 3-benzodioxol-2-one based electrolyte system. J. Power Sources 1998, 74, 142–145.

    Article  CAS  Google Scholar 

  164. Heider, U.; Schmidt, M.; Amann, A.; Niemann, M.; Kuehner, A. Use of additives in electrolytes for electrochemical cells. EP Patent 1,035,612, October 05, 2005.

Download references

Acknowledgements

This work is supported partially by the project of the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (Nos. LAPS21004 and LAPS202114), National Natural Science Foundation of China (Nos. 52272200, 51972110, 52102245, and 52072121), Beijing Science and Technology Project (No. Z211100004621010), Beijing Natural Science Foundation (Nos. 2222076 and 2222077), Hebei Natural Science Foundation (No. E2022502022), Huaneng Group Headquarters Science and Technology Project ((No. HNKJ20-H88), 2022 Strategic Research Key Project of Science and Technology Commission of the Ministry of Education, China Postdoctoral Science Foundation (No. 2022M721129), and the Fundamental Research Funds for the Central Universities (Nos. 2022MS030, 2021MS028, 2020MS023, and 2020MS028) and the NCEPU “Double First-Class” Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meicheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, L., Shi, Y., Li, Z. et al. Solid electrolyte interphase on anodes in rechargeable lithium batteries. Nano Res. 16, 11589–11603 (2023). https://doi.org/10.1007/s12274-023-5702-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5702-2

Keywords

Navigation