Skip to main content
Log in

A robust and unique approach for tuning the energy level of Ag2Se quantum dots via “on-surface” manipulation of nitrogen-containing groups of surface-coordinated ligands

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Effects of surface chemistry on energy levels or optical properties of semiconductor nanocrystals have attracted considerable attention and show great promise in broad applications. Yet, it remains challenging to controllably tune the photoluminescence (PL) of quantum dots (QDs) by manipulating surface ligands. Herein, we investigated effects of the ligand, glutathione (GSH), on PL properties of near-infrared (NIR) Ag2Se QDs by “on-surface” manipulation, that is, precisely manipulating the chelating group without dissociating the ligand from the surface. The anchoring of the amino group was found to be controlled by solution pH, whereas the binding of the thiol group to the Ag+ was pH independent, maintaining the “on-surface” state of GSH. By tuning the pH-controlled binding of amino groups, the energy level or the bandgap of Ag2Se QDs could be increased by up to 140 meV. The increased bandgap resulted in the blueshift of PL spectrum, which could be reversibly tuned by up to 75 nm. The pH-mediated tunable PL properties of QDs could also be extended to other nitrogen-containing pH-sensitive groups which could coordinate to the Ag+, not limited to the amino group. Our work would facilitate the study of nanocrystal surface chemistry and our model that the binding of amino groups affected energy levels of Ag2Se QDs might facilitate new insights into the electronic structure and energy level of other QD-ligand complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.

    Google Scholar 

  2. Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.

    CAS  Google Scholar 

  3. Caputo, J. A.; Frenette, L. C.; Zhao, N.; Sowers, K. L.; Krauss, T. D.; Weix, D. J. General and efficient C-C bond forming photoredox catalysis with semiconductor quantum dots. J. Am. Chem. Soc. 2017, 139, 4250–4253.

    CAS  Google Scholar 

  4. Ci, R. N.; Huang, C.; Zhao, L. M.; Qiao, J.; Chen, B.; Feng, K.; Tung, C. H.; Wu, L. Z. General and efficient C-P bond formation by quantum dots and visible light. CCS Chem. 2022, 4, 2946–2952.

    CAS  Google Scholar 

  5. Liu, S. L.; Wang, Z. G.; Zhang, Z. L.; Pang, D. W. Tracking single viruses infecting their host cells using quantum dots. Chem. Soc. Rev. 2016, 45, 1211–1224.

    CAS  Google Scholar 

  6. Zhou, J.; Yang, Y.; Zhang, C. Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669–11717.

    CAS  Google Scholar 

  7. Hartley, C. L.; Kessler, M. L.; Dempsey, J. L. Molecular-level insight into semiconductor nanocrystal surfaces. J. Am. Chem. Soc. 2021, 143, 1251–1266.

    CAS  Google Scholar 

  8. Kilina, S. V.; Tamukong, P. K.; Kilin, D. S. Surface chemistry of semiconducting quantum dots: Theoretical perspectives. Acc. Chem. Res. 2016, 49, 2127–2135.

    CAS  Google Scholar 

  9. Harris, R. D.; Bettis Homan, S.; Kodaimati, M.; He, C.; Nepomnyashchii, A. B.; Swenson, N. K.; Lian, S. C.; Calzada, R.; Weiss, E. A. Electronic processes within quantum dot-molecule complexes. Chem. Rev. 2016, 116, 12865–12919.

    CAS  Google Scholar 

  10. Li, G. M.; Fei, X. N.; Liu, H. F.; Gao, J.; Nie, J. Y.; Wang, Y. B.; Tian, Z. D.; He, C. C.; Wang, J. L.; Ji, C. et al. Fluorescence and optical activity of chiral CdTe quantum dots in their interaction with amino acids. ACS Nano 2020, 14, 4196–4205.

    CAS  Google Scholar 

  11. Kroupa, D. M.; Vörös, M.; Brawand, N. P.; Bronstein, N.; McNichols, B. W.; Castaneda, C. V.; Nozik, A. J.; Sellinger, A.; Galli, G.; Beard, M. C. Optical absorbance enhancement in PbS QD/cinnamate ligand complexes. J. Phys. Chem. Lett. 2018, 9, 3425–3433.

    CAS  Google Scholar 

  12. Ben-Moshe, A.; Teitelboim, A.; Oron, D.; Markovich, G. Probing the interaction of quantum dots with chiral capping molecules using circular dichroism spectroscopy. Nano Lett. 2016, 16, 7467–7473.

    CAS  Google Scholar 

  13. Westmoreland, D. E.; López-Arteaga, R.; Weiss, E. A. N-heterocyclic carbenes as reversible exciton-delocalizing ligands for photoluminescent quantum dots. J. Am. Chem. Soc. 2020, 142, 2690–2696.

    CAS  Google Scholar 

  14. Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771.

    CAS  Google Scholar 

  15. Chuang, C. H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

    CAS  Google Scholar 

  16. Kroupa, D. M.; Vörös, M.; Brawand, N. P.; McNichols, B. W.; Miller, E. M.; Gu, J.; Nozik, A. J.; Sellinger, A.; Galli, G.; Beard, M. C. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. Nat. Commun. 2017, 8, 15257.

    CAS  Google Scholar 

  17. Yu, M.; Doak, P.; Tamblyn, I.; Neaton, J. B. Theory of covalent adsorbate frontier orbital energies on functionalized light-absorbing semiconductor surfaces. J. Phys. Chem. Lett. 2013, 4, 1701–1706.

    CAS  Google Scholar 

  18. Liu, M. X.; Voznyy, O.; Sabatini, R.; García De Arquer, F. P.; Munir, R.; Balawi, A. H.; Lan, X. Z.; Fan, F. J.; Walters, G.; Kirmani, A. R. et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 2017, 16, 258–263.

    CAS  Google Scholar 

  19. Kennehan, E. R.; Munson, K. T.; Grieco, C.; Doucette, G. S.; Marshall, A. R.; Beard, M. C.; Asbury, J. B. Influence of ligand structure on excited state surface chemistry of lead sulfide quantum dots. J. Am. Chem. Soc. 2021, 143, 13824–13834.

    CAS  Google Scholar 

  20. Giansante, C.; Infante, I.; Fabiano, E.; Grisorio, R.; Suranna, G. P.; Gigli, G. “Darker-than-Black” PbS quantum dots: Enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. J. Am. Chem. Soc. 2015, 137, 1875–1886.

    CAS  Google Scholar 

  21. Frederick, M. T.; Weiss, E. A. Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand. ACS Nano 2010, 4, 3195–3200.

    CAS  Google Scholar 

  22. Frederick, M. T.; Amin, V. A.; Weiss, E. A. Optical properties of strongly coupled quantum dot-ligand systems. J. Phys. Chem. Lett. 2013, 4, 634–640.

    CAS  Google Scholar 

  23. Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863–5872.

    CAS  Google Scholar 

  24. Kuznetsova, V. A.; Mates-Torres, E.; Prochukhan, N.; Marcastel, M.; Purcell-Milton, F.; O’Brien, J.; Visheratina, A. K.; Martinez-Carmona, M.; Gromova, Y.; Garcia-Melchor, M. et al. Effect of chiral ligand concentration and binding mode on chiroptical activity of CdSe/CdS quantum dots. ACS Nano 2019, 13, 13560–13572.

    CAS  Google Scholar 

  25. Choi, J. K.; Haynie, B. E.; Tohgha, U.; Pap, L.; Elliott, K. W.; Leonard, B. M.; Dzyuba, S. V.; Varga, K.; Kubelka, J.; Balaz, M. Chirality inversion of CdSe and CdS quantum dots without changing the stereochemistry of the capping ligand. ACS Nano 2016, 10, 3809–3815.

    CAS  Google Scholar 

  26. Kuno, J.; Imamura, Y.; Katouda, M.; Tashiro, M.; Kawai, T.; Nakashima, T. Inversion of optical activity in the synthesis of mercury sulfide nanoparticles: Role of ligand coordination. Angew. Chem., Int. Ed. 2018, 57, 12022–12026.

    CAS  Google Scholar 

  27. Eagle, F. W.; Park, N.; Cash, M.; Cossairt, B. M. Surface chemistry and quantum dot luminescence: Shell growth, atomistic modification, and beyond. ACS Energy Lett. 2021, 6, 977–984.

    CAS  Google Scholar 

  28. Zhang, X.; Chen, Y.; Lian, L.; Zhang, Z.; Liu, Y.; Song, L.; Geng, C.; Zhang, J.; Xu, S. Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application. Nano Res. 2021, 14, 628–634.

    CAS  Google Scholar 

  29. Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799–2823.

    CAS  Google Scholar 

  30. Yang, S. Y.; Prendergast, D.; Neaton, J. B. Tuning semiconductor band edge energies for solar photocatalysis via surface ligand passivation. Nano Lett. 2012, 12, 383–388.

    CAS  Google Scholar 

  31. Dong, A. G.; Ye, X. C.; Chen, J.; Kang, Y. J.; Gordon, T.; Kikkawa, J. M.; Murray, C. B. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 2011, 133, 998–1006.

    CAS  Google Scholar 

  32. Preske, A.; O’Neill, S. W.; Swartz, B. D.; Liu, J.; Prezhdo, O. V.; Krauss, T. D. Size-programmed synthesis of PbSe quantum dots via secondary phosphine chalcogenides. Chem. Mater. 2019, 31, 8301–8307.

    CAS  Google Scholar 

  33. De Nolf, K.; Capek, R. K.; Abe, S.; Sluydts, M.; Jang, Y.; Martins, J. C.; Cottenier, S.; Lifshitz, E.; Hens, Z. Controlling the size of hot injection made nanocrystals by manipulating the diffusion coefficient of the solute. J. Am. Chem. Soc. 2015, 137, 2495–2505.

    CAS  Google Scholar 

  34. Zhang, M. Y.; Liu, A. A.; Fu, H. H.; Zhang, W.; Zhang, S. H.; Liu, Z. Y.; Jiang, L. H.; Shao, X.; Pang, D. W. Regulation of silver precursor reactivity via tertiary phosphine to synthesize near-infrared Ag2Te with photoluminescence quantum yield of up to 14.7%. Chem. Mater. 2021, 33, 9524–9533.

    CAS  Google Scholar 

  35. Frederick, M. T.; Amin, V. A.; Cass, L. C.; Weiss, E. A. A molecule to detect and perturb the confinement of charge carriers in quantum dots. Nano Lett. 2011, 11, 5455–5460.

    CAS  Google Scholar 

  36. Nag, A.; Kovalenko, M. V.; Lee, J. S.; Liu, W. Y.; Spokoyny, B.; Talapin, D. V. Metal-free inorganic ligands for colloidal nanocrystals: S2−, HS, Se2−, HSe, Te2−, HTe, TeS32−, OH, and NH2 as surface ligands. J. Am. Chem. Soc. 2011, 133, 10612–10620.

    CAS  Google Scholar 

  37. Wang, W. L.; Guo, Y.; Tiede, C.; Chen, S. Y.; Kopytynski, M.; Kong, Y. F.; Kulak, A.; Tomlinson, D.; Chen, R. J.; McPherson, M. et al. Ultraefficient cap-exchange protocol to compact biofunctional quantum dots for sensitive ratiometric biosensing and cell imaging. ACS Appl. Mater. Interfaces 2017, 9, 15232–15244.

    CAS  Google Scholar 

  38. Liu, Z. Y.; Liu, A. A.; Fu, H. H.; Cheng, Q. Y.; Zhang, M. Y.; Pan, M. M.; Liu, L. P.; Luo, M. Y.; Tang, B.; Zhao, W. et al. Breaking through the size control dilemma of silver chalcogenide quantum dots via trialkylphosphine-induced ripening: Leading to Ag2Te emitting from 950 to 2100 nm. J. Am. Chem. Soc. 2021, 143, 12867–12877.

    CAS  Google Scholar 

  39. Liu, A. A.; Sun, E. Z.; Wang, Z. G.; Liu, S. L.; Pang, D. W. Artificially regulated synthesis of nanocrystals in live cells. Natl. Sci. Rev. 2022, 9, nwab162.

    CAS  Google Scholar 

  40. Gu, Y. P.; Cui, R.; Zhang, Z. L.; Xie, Z. X.; Pang, D. W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 2012, 134, 79–82.

    CAS  Google Scholar 

  41. Zhao, J. Y.; Chen, G.; Gu, Y. P.; Cui, R.; Zhang, Z. L.; Yu, Z. L.; Tang, B.; Zhao, Y. F.; Pang, D. W. Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles. J. Am. Chem. Soc. 2016, 138, 1893–1903.

    CAS  Google Scholar 

  42. Zhao, J. Y.; Wang, Z. G.; Hu, H.; Zhang, Z. L.; Tang, B.; Luo, M. Y.; Yang, L. L.; Wang, B. S.; Pang, D. W. How different are the surfaces of semiconductor Ag2Se quantum dots with various sizes. Sci. Bull. 2022, 67, 619–625.

    CAS  Google Scholar 

  43. Kim, H. J.; Heo, C. H.; Kim, H. M. Benzimidazole-based ratiometric two-photon fluorescent probes for acidic pH in live cells and tissues. J. Am. Chem. Soc. 2013, 135, 17969–17977.

    CAS  Google Scholar 

  44. Chang, M. J.; Kim, K.; Park, K. S.; Kang, J. S.; Lim, C. S.; Kim, H. M.; Kang, C.; Lee, M. H. High-depth fluorescence imaging using a two-photon FRET system for mitochondrial pH in live cells and tissues. Chem. Commun. 2018, 54, 13531–13534.

    CAS  Google Scholar 

  45. Luo, X.; Yang, H. T.; Wang, H. L.; Ye, Z. W.; Zhou, Z. N.; Gu, L. Y.; Chen, J. Q.; Xiao, Y.; Liang, X. W.; Qian, X. H. et al. Highly sensitive hill-type small-molecule pH probe that recognizes the reversed pH gradient of cancer cells. Anal. Chem. 2018, 90, 5803–5809.

    CAS  Google Scholar 

  46. Ning, P.; Hou, L. L.; Feng, Y.; Xu, G. Y.; Bai, Y. Y.; Yu, H. Z.; Meng, X. M. Real-time visualization of autophagy by monitoring the fluctuation of lysosomal pH with a ratiometric two-photon fluorescent probe. Chem. Commun. 2019, 55, 1782–1785.

    CAS  Google Scholar 

  47. Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.

    CAS  Google Scholar 

  48. Jerkiewicz, G. Standard and reversible hydrogen electrodes: Theory, design, operation, and applications. ACS Catal. 2020, 19, 8409–8417.

    Google Scholar 

  49. Zhang, W.; Yu, Z. L.; Wu, M.; Ren, J. G.; Xia, H. F.; Sa, G. L.; Zhu, J. Y.; Pang, D. W.; Zhao, Y. F.; Chen, G. Magnetic and folate functionalization enables rapid isolation and enhanced tumortargeting of cell-derived microvesicles. ACS Nano 2017, 11, 277–290.

    CAS  Google Scholar 

  50. Tian, R.; Shen, Z. Y.; Zhou, Z. J.; Munasinghe, J.; Zhang, X.; Jacobson, O.; Zhang, M. X.; Niu, G.; Pang, D. W.; Cui, R. et al. Ultrasmall quantum dots with broad-spectrum metal doping ability for trimodal molecular imaging. Adv. Funct. Mater. 2019, 29, 1901671.

    Google Scholar 

  51. Lv, C.; Zhang, T. Y.; Lin, Y.; Tang, M.; Zhai, C. H.; Xia, H. F.; Wang, J.; Zhang, Z. L.; Xie, Z. X.; Chen, G. et al. Transformation of viral light particles into near-infrared fluorescence quantum dot-labeled active tumor-targeting nanovectors for drug delivery. Nano Lett. 2019, 19, 7035–7042.

    CAS  Google Scholar 

  52. Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J. C.; Hens, Z. Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study. ACS Nano 2011, 5, 2004–2012.

    CAS  Google Scholar 

  53. Moreels, I.; Fritzinger, B.; Martins, J. C.; Hens, Z. Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc. 2008, 139, 15081–15086.

    Google Scholar 

  54. Wu, Z. K.; Gayathri, C.; Gil, R. R.; Jin, R. C. Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J. Am. Chem. Soc. 2009, 131, 6535–6542.

    CAS  Google Scholar 

  55. Fritzinger, B.; Capek, R. K.; Lambert, K.; Martins, J. C.; Hens, Z. Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots. J. Am. Chem. Soc. 2010, 132, 10195–10201.

    CAS  Google Scholar 

  56. Akira, I. NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose 1997, 4, 99–107.

    Google Scholar 

  57. Hassan, Y.; Park, J. H.; Crawford, M. L.; Sadhanala, A.; Lee, J.; Sadighian, J. C.; Mosconi, E.; Shivanna, R.; Radicchi, E.; Jeong, M. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 2021, 591, 72–77.

    CAS  Google Scholar 

  58. Mićić, O. I.; Sprague, J.; Lu, Z. H.; Nozik, A. J. Highly efficient band-edge emission from InP quantum dots. Appl. Phys. Lett. 1996, 68, 3150–3152.

    Google Scholar 

  59. Ji, C. Y.; Zhang, Y.; Zhang, T. Q.; Liu, W. Y.; Zhang, X. Y.; Shen, H. Z.; Wang, Y.; Gao, W. Z.; Wang, Y. D.; Zhao, J. et al. Temperature-dependent photoluminescence of Ag2Se quantum dots. J. Phys. Chem. C 2015, 119, 13841–13846.

    CAS  Google Scholar 

  60. Tang, R.; Lee, H.; Achilefu, S. Induction of pH sensitivity on the fluorescence lifetime of quantum dots by NIR fluorescent dyes. J. Am. Chem. Soc. 2012, 134, 4545–4548.

    CAS  Google Scholar 

  61. Amelia, M.; Lincheneau, C.; Silvi, S.; Credi, A. Electrochemical properties of CdSe and CdTe quantum dots. Chem. Soc. Rev. 2012, 41, 5728–5743.

    CAS  Google Scholar 

  62. Haram, S. K.; Quinn, B. M.; Bard, A. J. Electrochemistry of CdS nanoparticles: A correlation between optical and electrochemical band gaps. J. Am. Chem. Soc. 2001, 123, 8860–8861.

    CAS  Google Scholar 

  63. Inamdar, S. N.; Ingole, P. P.; Haram, S. K. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry. ChemPhysChem 2008, 9, 2574–2579.

    CAS  Google Scholar 

  64. Querner, C.; Reiss, P.; Sadki, S.; Zagorska, M.; Pron, A. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals. Phys. Chem. Chem. Phys. 2005, 7, 3204–3209.

    CAS  Google Scholar 

  65. Haram, S. K.; Kshirsagar, A.; Gujarathi, Y. D.; Ingole, P. P.; Nene, O. A.; Markad, G. B.; Nanavati, S. P. Quantum confinement in CdTe quantum dots: Investigation through cyclic voltammetry supported by density functional theory (DFT). J. Phys. Chem. C 2011, 115, 6243–6249.

    CAS  Google Scholar 

  66. Kucur, E.; Riegler, J.; Urban, G. A.; Nann, T. Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry. J. Chem. Phys. 2003, 119, 2333–2337.

    CAS  Google Scholar 

  67. Cui, R.; Gu, Y. P.; Bao, L.; Zhao, J. Y.; Qi, B. P.; Zhang, Z. L.; Xie, Z. X.; Pang, D. W. Near-infrared electrogenerated chemiluminescence of ultrasmall Ag2Se quantum dots for the detection of dopamine. Anal. Chem. 2012, 84, 8932–8935.

    CAS  Google Scholar 

  68. Poznyak, S. K.; Talapin, D. V.; Shevchenko, E. V.; Weller, H. Quantum dot chemiluminescence. Nano Lett. 2004, 4, 693–698.

    CAS  Google Scholar 

  69. Sun, Q. J.; Wang, H. Q.; Yang, C. H.; Li, Y. F. Synthesis and electroluminescence of novel copolymers containing crown ether spacers. J. Mater. Chem. 2003, 13, 800–806.

    CAS  Google Scholar 

  70. Beaupré, S.; Leclerc, M. Fluorene-based copolymers for red-light-emitting diodes. Adv. Funct. Mater. 2002, 12, 192–196.

    Google Scholar 

  71. Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

    CAS  Google Scholar 

  72. Praharaj, S.; Nath, S.; Panigrahi, S.; Basu, S.; Ghosh, S. K.; Pande, S.; Jana, S.; Pal, T. Room temperature synthesis of coinage metal (Ag, Cu) chalcogenides. Chem. Commun. 2006, 36, 3836–3838.

    Google Scholar 

  73. Sahu, A.; Khare, A.; Deng, D. D.; Norris, D. J. Quantum confinement in silver selenide semiconductor nanocrystals. Chem. Commun. 2012, 48, 5458–5460.

    CAS  Google Scholar 

  74. He, C.; Weinberg, D. J.; Nepomnyashchii, A. B.; Lian, S. C.; Weiss, E. A. Control of the redox activity of PbS quantum dots by tuning electrostatic interactions at the quantum dot/solvent interface. J. Am. Chem. Soc. 2016, 138, 8847–8854.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research & Development Program of China (No. 2019YFA0210100), the National Natural Science Foundation of China (Nos. 91859123 and 21827808), and the Haihe Laboratory of Sustainable Chemical Transformations for financial support. We thank Tao Zeng and Yi-Yan Bai for the materials of the electrochemical experiment. We appreciate the support of NMR measurements from Core Research Facilities of Wuhan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Wen Pang.

Electronic Supplementary Material

12274_2023_5688_MOESM1_ESM.pdf

A robust and unique approach for tuning the energy level of Ag2Se quantum dots via “on-surface” manipulation of nitrogen-containing groups of surface-coordinated ligands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, MY., Tang, B., Liu, AA. et al. A robust and unique approach for tuning the energy level of Ag2Se quantum dots via “on-surface” manipulation of nitrogen-containing groups of surface-coordinated ligands. Nano Res. 16, 12608–12617 (2023). https://doi.org/10.1007/s12274-023-5688-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5688-9

Keywords

Navigation