Skip to main content
Log in

A lithium sulfonylimide COF-modified separator for high-performance Li-S batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) batteries are highly regarded as the next-generation high-energy-density secondary batteries due to their high capacity and large theoretical energy density. However, the practical application of these batteries is hindered mainly by the polysulfide shuttle issue. Herein, we designed and synthesized a new lithium sulfonylimide covalent organic framework (COF) material (COF-LiSTFSI, LiSTFSI = lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl)imide), and further used it to modify the common polypropylene (PP) separator of Li-S batteries. The COF-LiSTFSI with sulfonylimide anion groups features stronger electronegativity, thus can effectively facilitate the lithium ion conduction while significantly suppress the diffusion of polysulfides via the electrostatic interaction. Compared with the unmodified PP separator, the COF-LiSTFSI modified separator results in a high ionic conductivity (1.50 mS·cm−1) and Li+ transference number (0.68). Consequently, the Li-S battery using the COF-LiSTFSI modified separator achieves a high capacity of 1229.7 mAh·g−1 at 0.2 C and a low decay rate of only 0.042% per cycle after 1000 cycles at 1 C, compared with those of 941.5 mAh·g−1 and 0.061% using the unmodified PP separator, respectively. These results indicate that by choosing suitable functional groups, an effective strategy for COF-modified separators could be developed for high-performance Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  2. Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

    Article  CAS  Google Scholar 

  3. Guo, X. T.; Xu, H. Y.; Li, W. T.; Liu, Y. Y.; Shi, Y. X.; Li, Q.; Pang, H. Embedding atomically dispersed iron sites in nitrogen-doped carbon frameworks-wrapped silicon suboxide for superior lithium storage. Adv. Sci. 2023, 10, 2206084.

    Article  CAS  Google Scholar 

  4. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  CAS  Google Scholar 

  5. Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

    Article  Google Scholar 

  6. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    Article  CAS  Google Scholar 

  7. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

    Article  CAS  Google Scholar 

  8. Huang, S. Z.; Wang, Z. H.; Von Lim, Y.; Wang, Y.; Li, Y.; Zhang, D. H.; Yang, H. Y. Recent advances in heterostructure engineering for lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003689.

    Article  CAS  Google Scholar 

  9. Chen, Y.; Wang, T. Y.; Tian, H. J.; Su, D. W.; Zhang, Q.; Wang, G. X. Advances in lithium-sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666.

    Article  CAS  Google Scholar 

  10. Chen, Z. X.; Zhao, M.; Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Huang, J. Q. Toward practical high-energy-density lithium-sulfur pouch cells: A review. Adv. Mater. 2022, 34, 2201555.

    Article  CAS  Google Scholar 

  11. Wang, M. L.; Song, Y. Z.; Sun, Z. T.; Shao, Y. L.; Wei, C. H.; Xia, Z.; Tian, Z. N.; Liu, Z. F.; Sun, J. Y. Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium-sulfur batteries. ACS Nano 2019, 13, 13235–13243.

    Article  CAS  Google Scholar 

  12. Xue, W. J.; Shi, Z.; Suo, L. M.; Wang, C.; Wang, Z. Q.; Wang, H. Z.; So, K. P.; Maurano, A.; Yu, D. W.; Chen, Y. M. et al. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 2019, 4, 374–382.

    Article  CAS  Google Scholar 

  13. Xiao, W.; Kiran, G. K.; Yoo, K.; Kim, J. H.; Xu, H. Y. The dual-site adsorption and high redox activity enabled by hybrid organic-inorganic vanadyl ethylene glycolate for high-rate and long-durability lithium-sulfur batteries. Small, in press, https://doi.org/10.1002/smll.202206750.

  14. Gao, X.; Zheng, X. L.; Wang, J. Y.; Zhang, Z. W.; Xiao, X.; Wan, J. Y.; Ye, Y. S.; Chou, L. Y.; Lee, H. K.; Wang, J. Y. et al. Incorporating the nanoscale encapsulation concept from liquid electrolytes into solid-state lithium-sulfur batteries. Nano Lett. 2020, 20, 5496–5503.

    Article  CAS  Google Scholar 

  15. Li, S. L.; Zhang, W. F.; Zheng, J. F.; Lv, M. Y.; Song, H. Y.; Du, L. Inhibition of polysulfide shuttles in Li-S batteries: Modified separators and solid-state electrolytes. Adv. Energy Mater. 2021, 11, 2000779.

    Article  CAS  Google Scholar 

  16. Jin, L. N.; Fu, Z. H.; Qian, X. Y.; Li, F.; Wang, Y. H.; Wang, B.; Shen, X. Q. Co-N/KB porous hybrid derived from ZIF 67/KB as a separator modification material for lithium-sulfur batteries. Electrochim. Acta 2021, 382, 138282.

    Article  CAS  Google Scholar 

  17. Pang, Y.; Wei, J. S.; Wang, Y. G.; Xia, Y. Y. Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702288.

    Article  Google Scholar 

  18. Lei, T. Y.; Chen, W.; Lv, W. Q.; Huang, J. W.; Zhu, J.; Chu, J. W.; Yan, C. Y.; Wu, C. Y.; Yan, Y. C.; He, W. D. et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091–2104.

    Article  CAS  Google Scholar 

  19. Pei, F.; Lin, L. L.; Fu, A.; Mo, S. G.; Ou, D. H.; Fang, X. L.; Zheng, N. F. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries. Joule 2018, 2, 323–336.

    Article  CAS  Google Scholar 

  20. Jin, Z. Q.; Xie, K.; Hong, X. B.; Hu, Z. Q.; Liu, X. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J. Power Sources 2012, 218, 163–167.

    Article  CAS  Google Scholar 

  21. Ma, G. Q.; Huang, F. F.; Wen, Z. Y.; Wang, Q. S.; Hong, X. H.; Jin, J.; Wu, X. W. Enhanced performance of lithium sulfur batteries with conductive polymer modified separators. J. Mater. Chem. A 2016, 4, 16968–16974.

    Article  CAS  Google Scholar 

  22. Jiao, L.; Zhang, C.; Geng, C. N.; Wu, S. C.; Li, H.; Lv, W.; Tao, Y.; Chen, Z. J.; Zhou, G. M.; Li, J. et al. Capture and catalytic conversion of polysulfides by in situ built TiO2–MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900219.

    Article  Google Scholar 

  23. Luo, Y. F.; Luo, N. N.; Kong, W. B.; Wu, H. C.; Wang, K.; Fan, S. S.; Duan, W. H.; Wang, J. P. Multifunctional interlayer based on molybdenum diphosphide catalyst and carbon nanotube film for lithium-sulfur batteries. Small 2018, 14, 1702853.

    Article  Google Scholar 

  24. Ghazi, Z. A.; He, X.; Khattak, A. M.; Khan, N. A.; Liang, B.; Iqbal, A.; Wang, J. X.; Sin, H.; Li, L. S.; Tang, Z. Y. MoS2/Celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606817.

    Article  Google Scholar 

  25. Hong, X. J.; Song, C. L.; Yang, Y.; Tan, H. C.; Li, G. H.; Cai, Y. P.; Wang, H. X. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries. ACS Nano 2019, 13, 1923–1931.

    CAS  Google Scholar 

  26. Song, C. L.; Li, G. H.; Yang, Y.; Hong, X. J.; Huang, S.; Zheng, Q. F.; Si, L. P.; Zhang, M.; Cai, Y. P. 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery. Chem. Eng. J. 2020, 381, 122701.

    Article  CAS  Google Scholar 

  27. Chen, C.; Jiang, Q. B.; Xu, H. F.; Zhang, Y. P.; Zhang, B. K.; Zhang, Z. Y.; Lin, Z.; Zhang, S. Q. Ni/SiO2/graphene-modified separator as a multifunctional polysulfide barrier for advanced lithium-sulfur batteries. Nano Energy 2020, 76, 105033.

    Article  CAS  Google Scholar 

  28. Yan, W. Q.; Gao, X. W.; Yang, J. L.; Xiong, X. S.; Xia, S.; Huang, W.; Chen, Y. H.; Fu, L. J.; Zhu, Y. S.; Wu, Y. P. Boosting polysulfide catalytic conversion and facilitating Li+ transportation by ion-selective COFs composite nanowire for Li-S batteries. Small 2022, 18, 2106679.

    Article  CAS  Google Scholar 

  29. Jiang, C.; Tang, M.; Zhu, S. L.; Zhang, J. D.; Wu, Y. C.; Chen, Y.; Xia, C.; Wang, C. L.; Hu, W. P. Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks (COFs). Angew. Chem., Int. Ed. 2018, 57, 16072–16076.

    Article  CAS  Google Scholar 

  30. Cao, Y.; Wu, H.; Li, G.; Liu, C.; Cao, L.; Zhang, Y. M.; Bao, W.; Wang, H. L.; Yao, Y.; Liu, S. et al. Ion selective covalent organic framework enabling enhanced electrochemical performance of lithium-sulfur batteries. Nano Lett. 2021, 21, 2997–3006.

    Article  CAS  Google Scholar 

  31. Cao, Y.; Liu, C.; Wang, M. D.; Yang, H.; Liu, S.; Wang, H. L.; Yang, Z. X.; Pan, F. S.; Jiang, Z. Y.; Sun, J. Lithiation of covalent organic framework nanosheets facilitating lithium-ion transport in lithium-sulfur batteries. Energy Storage Mater. 2020, 29, 207–215.

    Article  Google Scholar 

  32. Xu, J.; An, S. H.; Song, X. Y.; Cao, Y. J.; Wang, N.; Qiu, X.; Zhang, Y.; Chen, J. W.; Duan, X. L.; Huang, J. H. et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 2021, 33, 2105178.

    Article  CAS  Google Scholar 

  33. Gao, J. Y.; Wang, C.; Han, D. W.; Shin, D. M. Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications. Chem. Sci. 2021, 12, 13248–13272.

    Article  CAS  Google Scholar 

  34. Li, X. L.; Zhang, C. L.; Cai, S. L.; Lei, X. H.; Altoe, V.; Hong, F.; Urban, J. J.; Ciston, J.; Chan, E. M.; Liu, Y. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 2018, 9, 2998.

    Article  Google Scholar 

  35. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions, and prospects. Adv. Mater. 2017, 29, 1606823.

    Article  Google Scholar 

  36. Li, Y. J.; Lin, S. Y.; Wang, D. D.; Gao, T. T.; Song, J. W.; Zhou, P.; Xu, Z. K.; Yang, Z. H.; Xiao, N.; Guo, S. J. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv. Mater. 2020, 32, 1906722.

    Article  CAS  Google Scholar 

  37. Zhao, M.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. A perspective toward practical lithium-sulfur batteries. ACS Cent. Sci. 2020, 6, 1095–1104.

    Article  CAS  Google Scholar 

  38. Wang, L.; Zhang, Y. M.; Guo, H. Y.; Li, J.; Stach, E. A.; Tong, X.; Takeuchi, E. S.; Takeuchi, K. J.; Liu, P.; Marschilok, A. C. et al. Structural and electrochemical characteristics of Ca-doped “flower-like” Li4Ti5O12 motifs as high-rate anode materials for lithium-ion batteries. Chem. Mater. 2018, 30, 671–684.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 52090034) and the Higher Education Discipline Innovation Project (No. B12015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongtao Zhang or Yongsheng Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, J., Zhu, J. et al. A lithium sulfonylimide COF-modified separator for high-performance Li-S batteries. Nano Res. 16, 12601–12607 (2023). https://doi.org/10.1007/s12274-023-5683-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5683-1

Keywords

Navigation