Skip to main content
Log in

In situ tracking of the lithiation and sodiation process of disodium terephthalate as anodes for rechargeable batteries by Raman spectroscopy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Organic compounds represent an appealing group of electrode materials for rechargeable batteries due to their merits of biomass, sustainability, environmental friendliness, and processability. Disodium terephthalate (Na2C8H4O4, Na2TP), an organic salt with a theoretical capacity of 255 mAh·g−1, is electroactive towards both lithium and sodium. However, its electrochemical energy storage (EES) process has not been directly observed via in situ characterization techniques and the underlying mechanisms are still under debate. Herein, in situ Raman spectroscopy was employed to track the de/lithiation and de/sodiation processes of Na2TP. The appearance and then disappearance of the −COOLi Raman band at 1625 cm−1 during the de/lithiation, and the increase and then decrease of the −COONa Raman band at 1615 cm−1 during the de/sodiation processes of Na2TP elucidate the one-step with the 2Li+ or 2Na+ transfer mechanism. We also found that the inferior cycling stability of Na2TP as an anode for sodium-ion batteries (SIBs) than lithium-ion batteries (LIBs) could be due to the larger ion radium of Na+ than Li+, which results in larger steric resistance and polarization during EES. The Na2TP, therefore, shows greater changes in spectra during de/sodiation than de/lithiation. We expect that our findings could provide a reference for the rational design of organic compounds for EES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y. L.; Yao, Y. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 2020, 120, 6490–6557.

    Article  CAS  Google Scholar 

  2. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  3. Li, J.; Peng, Z. Q.; Wang, E. K. Tackling grand challenges of the 21st century with electroanalytical chemistry. J. Am. Chem. Soc. 2018, 140, 10629–10638.

    Article  CAS  Google Scholar 

  4. Li, Y.; Qian, Y.; Zhou, J.; Lin, N.; Qian, Y. T. Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial Coulombic efficiency. Nano Res. 2022, 15, 230–237.

    Article  Google Scholar 

  5. Li, Y.; Zhou, H. M.; Lin, N.; Qian, Y. T. Revealing the size-dependent electrochemical Li-storage behaviors of SiO-based anodes. J. Mater. Chem. A 2022, 10, 23770–23779.

    Article  CAS  Google Scholar 

  6. Li, Y.; Qian, Y.; Zhao, Y.; Lin, N.; Qian, Y. T. Revealing the interface-rectifying functions of a Li-cyanonaphthalene prelithiation system for SiO electrode. Sci. Bull. 2022, 67, 636–645.

    Article  CAS  Google Scholar 

  7. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    Article  CAS  Google Scholar 

  8. Wan, J.; Zuo, Z. C.; Shen, Z. Z.; Chen, W. P.; Liu, G. X.; Hu, X. C.; Song, Y. X.; Xin, S.; Guo, Y. G.; Wen, R. et al. Interfacial evolution of the solid electrolyte interphase and lithium deposition in graphdiyne-based lithium-ion batteries. J. Am. Chem. Soc. 2022, 144, 9354–9362.

    Article  CAS  Google Scholar 

  9. Lin, M. H.; Cheng, J. H.; Huang, H. F.; Chen, U. F.; Huang, C. M.; Hsieh, H. W.; Lee, J. M.; Chen, J. M.; Su, W. N.; Hwang, B. J. Revealing the mitigation of intrinsic structure transformation and oxygen evolution in a layered Li1.2Ni0.2Mn0.6O2 cathode using restricted charging protocols. J. Power Sources 2017, 359, 539–548.

    Article  CAS  Google Scholar 

  10. Que, L. F.; Yu, F. D.; Xia, Y.; Deng, L.; Goh, K.; Liu, C.; Jiang, Y. S.; Sui, X. L.; Wang, Z. B. Enhancing Na-ion storage at subzero temperature via interlayer confinement of Sn2+. ACS Nano 2020, 14, 13765–13774.

    Article  CAS  Google Scholar 

  11. Ma, Y. J.; Hu, Y.; Pramudya, Y.; Diemant, T.; Wang, Q. S.; Goonetilleke, D.; Tang, Y. S.; Zhou, B.; Hahn, H.; Wenzel, W. et al. Resolving the role of configurational entropy in improving cycling performance of multicomponent hexacyanoferrate cathodes for sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2202372.

    Article  CAS  Google Scholar 

  12. Li, Y. M.; Lu, Y. X.; Zhao, C. L.; Hu, Y. S.; Titirici, M. M.; Li, H.; Huang, X. J.; Chen, L. Q. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017, 7, 130–151.

    Article  Google Scholar 

  13. Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J. M. Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 2009, 8, 120–125.

    Article  CAS  Google Scholar 

  14. Häupler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful organic materials for secondary batteries. Adv. Energy Mater. 2015, 5, 1402034.

    Article  Google Scholar 

  15. Zhao, Q.; Lu, Y.; Chen, J. Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2017, 7, 11601792.

    Article  Google Scholar 

  16. Song, Z. P.; Zhou, H. S. Towards sustainable and versatile energy storage devices: An overview of organic electrode materials. Energy Environ. Sci. 2013, 6, 2280–2301.

    Article  CAS  Google Scholar 

  17. Yin, X. P.; Sarkar, S.; Shi, S. S.; Huang, Q. A.; Zhao, H. B.; Yan, L. M.; Zhao, Y. F.; Zhang, J. J. Recent progress in advanced organic electrode materials for sodium-ion batteries: Synthesis, mechanisms, challenges and perspectives. Adv. Funct. Mater. 2020, 30, 1908445.

    Article  CAS  Google Scholar 

  18. Abouimrane, A.; Weng, W.; Eltayeb, H.; Cui, Y. J.; Niklas, J.; Poluektov, O.; Amine, K. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy Environ. Sci. 2012, 5, 9632–9638.

    Article  CAS  Google Scholar 

  19. Gao, P.; Chen, Z.; Zhao-Karger, Z.; Mueller, J. E.; Jung, C.; Klyatskaya, S.; Diemant, T.; Fuhr, O.; Jacob, T.; Behm, R. J. et al. A porphyrin complex as a self-conditioned electrode material for high-performance energy storage. Angew. Chem., Int. Ed. 2017, 56, 10341–10346.

    Article  CAS  Google Scholar 

  20. Deng, Q. J.; Wang, Y.; Zhao, Y.; Li, J. Z. Disodium terephthalate/multiwall-carbon nanotube nanocomposite as advanced anode material for Li-ion batteries. Ionics 2017, 23, 2613–2619.

    Article  CAS  Google Scholar 

  21. Zhao, L.; Zhao, J. M.; Hu, Y. S.; Li, H.; Zhou, Z. B.; Armand, M.; Chen, L. Q. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv. Energy Mater. 2012, 2, 962–965.

    Article  CAS  Google Scholar 

  22. Wang, Y.; Kretschmer, K.; Zhang, J. Q.; Mondal, A. K.; Guo, X.; Wang, G. X. Organic sodium terephthalate@graphene hybrid anode materials for sodium-ion batteries. RSC Adv. 2016, 6, 57098–57102.

    Article  CAS  Google Scholar 

  23. Wan, F.; Wu, X. L.; Guo, J. Z.; Li, J. Y.; Zhang, J. P.; Niu, L.; Wang, R. S. Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy 2015, 13, 450–457.

    Article  CAS  Google Scholar 

  24. Zhang, S. W.; Cao, T. F.; Lv, W.; Zhang, J.; Tao, Y.; Kang, F. Y.; Wang, D. W.; Yang, Q. H. High-performance graphene/disodium terephthalate electrodes with ether electrolyte for exceptional cooperative sodiation/desodiation. Nano Energy 2020, 77, 105203.

    Article  CAS  Google Scholar 

  25. Sk, M. A.; Manzhos, S. Exploring the sodium storage mechanism in disodium terephthalate as anode for organic battery using density-functional theory calculations. J. Power Sources 2016, 324, 572–581.

    Article  CAS  Google Scholar 

  26. Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56.

    Article  Google Scholar 

  27. Amalraj, S. F.; Aurbach, D. The use of in situ techniques in R&D of Li and Mg rechargeable batteries. J. Solid State Electrochem. 2011, 15, 877–890.

    Article  CAS  Google Scholar 

  28. Yao, H. R.; Wang, P. F.; Gong, Y.; Zhang, J. N.; Yu, X. Q.; Gu, L.; Ouyang, C. Y.; Yin, Y. X.; Hu, E. Y.; Yang, X. Q. et al. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. J. Am. Chem. Soc. 2017, 139, 8440–8443.

    Article  CAS  Google Scholar 

  29. Lin, X. M.; Yang, X. T.; Chen, H. N.; Deng, Y. L.; Chen, W. H.; Dong, J. C.; Wei, Y. M.; Li, J. F. In situ characterizations of advanced electrode materials for sodium-ion batteries toward high electrochemical performances. J. Energy Chem. 2023, 76, 146–164.

    Article  CAS  Google Scholar 

  30. Wang, Y. Q.; Ding, Y.; Pan, L. J.; Shi, Y.; Yue, Z. H.; Shi, Y.; Yu, G. H. Understanding the size-dependent sodium storage properties of Na2C6O6-based organic electrodes for sodium-ion batteries. Nano Lett. 2016, 16, 3329–3334.

    Article  CAS  Google Scholar 

  31. Lee, M.; Hong, J.; Lopez, J.; Sun, Y. M.; Feng, D. W.; Lim, K.; Chueh, W. C.; Toney, M. F.; Cui, Y.; Bao, Z. N. High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2017, 2, 861–868.

    Article  CAS  Google Scholar 

  32. Wu, X. Y.; Jin, S. F.; Zhang, Z. Z.; Jiang, L. W.; Mu, L. Q.; Hu, Y. S.; Li, H.; Chen, X. L.; Armand, M.; Chen, L. Q. et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Sci. Adv. 2015, 1, e1500330.

    Article  Google Scholar 

  33. Song, Z. P.; Zhan, H.; Zhou, Y. H. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem. Commun. 2009, 448–450.

  34. Bitenc, J.; Pirnat, K.; Bančič, T.; Gaberšček, M.; Genorio, B.; Randon-Vitanova, A.; Dominko, R. Anthraquinone-based polymer as cathode in rechargeable magnesium batteries. ChemSusChem 2015, 8, 4128–4132.

    Article  CAS  Google Scholar 

  35. Vizintin, A.; Bitenc, J.; Lautar, A. K.; Pirnat, K.; Grdadolnik, J.; Stare, J.; Randon-Vitanova, A.; Dominko, R. Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy. Nat. Commun. 2018, 9, 661.

    Article  Google Scholar 

  36. Lu, Y.; Hou, X. S.; Miao, L. C.; Li, L.; Shi, R. J.; Liu, L. J.; Chen, J. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 7020–7024.

    Article  CAS  Google Scholar 

  37. Ma, T.; Liu, L. J.; Wang, J. Q.; Lu, Y.; Chen, J. Charge storage mechanism and structural evolution of viologen crystals as the cathode of lithium batteries. Angew. Chem., Int. Ed. 2020, 59, 11533–11539.

    Article  CAS  Google Scholar 

  38. Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.

    Article  CAS  Google Scholar 

  39. Deng, Y. F.; Dong, S. Y.; Li, Z. F.; Jiang, H.; Zhang, X. G.; Ji, X. L. Applications of conventional vibrational spectroscopic methods for batteries beyond Li-ion. Small Methods 2018, 2, 1700332.

    Article  Google Scholar 

  40. Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 5002–5069.

    Article  CAS  Google Scholar 

  41. Cai, C. C.; Chen, Y. A.; Hu, P.; Zhu, T.; Li, X. Y.; Yu, Q.; Zhou, L.; Yang, X. Y.; Mai, L. Regulating the interlayer spacings of hard carbon nanofibers enables enhanced pore filling sodium storage. Small 2022, 18, 2105303.

    Article  CAS  Google Scholar 

  42. Cohn, A. P.; Share, K.; Carter, R.; Oakes, L.; Pint, C. L. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene. Nano Lett. 2016, 16, 543–548.

    Article  CAS  Google Scholar 

  43. Lin, X. M.; Diemant, T.; Mu, X. K.; Gao, P.; Behm, R. J.; Fichtner, M. Spectroscopic investigations on the origin of the improved performance of composites of nanoparticles/graphene sheets as anodes for lithium ion batteries. Carbon 2018, 127, 47–56.

    Article  CAS  Google Scholar 

  44. Chen, J. J.; Yuan, R. M.; Feng, J. M.; Zhang, Q.; Huang, J. X.; Fu, G.; Zheng, M. S.; Ren, B.; Dong, Q. F. Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem. Mater. 2015, 27, 2048–2055.

    Article  CAS  Google Scholar 

  45. Vinayan, B. P.; Diemant, T.; Lin, X. M.; Cambaz, M. A.; Golla-Schindler, U.; Kaiser, U.; Jürgen Behm, R.; Fichtner, M. Nitrogen rich hierarchically organized porous carbon/sulfur composite cathode electrode for high performance Li/S battery: A mechanistic investigation by operando spectroscopic studies. Adv. Mater. Interfaces 2016, 3, 1600372.

    Article  Google Scholar 

  46. Zhai, D. Y.; Wang, H. H.; Lau, K. C.; Gao, J.; Redfern, P. C.; Kang, F. Y.; Li, B. H.; Indacochea, E.; Das, U.; Sun, H. H. et al. Raman evidence for late stage disproportionation in a Li−O2 battery. J. Phys. Chem. Lett. 2014, 5, 2705–2710.

    Article  CAS  Google Scholar 

  47. Zhao, Z. W.; Zhang, X.; Zhou, Z.; Wang, E. K.; Peng, Z. Q. Direct in situ spectroscopic evidence for solution-mediated oxygen reduction reaction intermediates in aprotic lithium-oxygen batteries. Nano Lett. 2022, 22, 501–507.

    Article  CAS  Google Scholar 

  48. Lin, X. M.; Wu, D. Y.; Gao, P.; Chen, Z.; Ruben, M.; Fichtner, M. Monitoring the electrochemical energy storage processes of an organic full rechargeable battery via operando Raman spectroscopy: A mechanistic study. Chem. Mater. 2019, 31, 3239–3247.

    Article  CAS  Google Scholar 

  49. Varghese, H. T.; Panicker, C. Y.; Philip, D.; Sreevalsan, K.; Anithakumary, V. IR, Raman and SERS spectra of disodium terephthalate. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2007, 68, 817–822.

    Article  Google Scholar 

  50. Smith, E.; Dent, G. Modern Raman SpectroscopyA Practical Approach; John Wiley & Sons Ltd: Chichester, 2019.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22005130, 22272069, 22004054, and 21925404) and the Natural Science Foundation of Fujian Province of China (Nos. 2021J01988 and 2020J05163).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-Mei Lin or Jian-Feng Li.

Electronic supplementary material

12274_2023_5680_MOESM1_ESM.pdf

In situ tracking of the lithiation and sodiation process of disodium terephthalate as anodes for rechargeable batteries by Raman spectroscopy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, XM., Han, C., Yang, XT. et al. In situ tracking of the lithiation and sodiation process of disodium terephthalate as anodes for rechargeable batteries by Raman spectroscopy. Nano Res. 17, 245–252 (2024). https://doi.org/10.1007/s12274-023-5680-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5680-4

Keywords

Navigation