Skip to main content
Log in

How to build good inverters from nanomaterial-based transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As promising components of future integrated circuits (ICs), field-effect transistors (FETs) based on semiconducting nanomaterials are being extensively investigated. As the most essential component of ICs, inverters are favored to be demonstrated at the infant stage of emerging technologies. However, systematic research is absent to reveal how the parameters of transistors affect the performance of inverters, e.g. the voltage transfer characteristics (VTCs). In this work, systematic analysis about the dependency between transistor- and inverter-level metrics have been carried out for both complementary metal-oxide-semiconductor (CMOS) and monotype (p-type-only and n-type-only) technologies, which is further experimentally demonstrated by carbon nanotube FETs and ICs. We also propose guidelines towards the high noise margin and rail-to-rail inverter design based on nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758–762.

    Article  CAS  Google Scholar 

  2. Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

    Article  CAS  Google Scholar 

  3. Zhong, D. L.; Zhang, Z. Y.; Ding, L.; Han, J.; Xiao, M. M.; Si, J.; Xu, L.; Qiu, C. G.; Peng, L. M. Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 2018, 1, 40–45.

    Article  CAS  Google Scholar 

  4. Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

    Article  CAS  Google Scholar 

  5. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  CAS  Google Scholar 

  6. Lin, Y. M.; Valdes-Garcia, A.; Han, S. J.; Farmer, D. B.; Meric, I.; Sun, Y. N.; Wu, Y. Q.; Dimitrakopoulos, C.; Grill, A.; Avouris, P. et al. Wafer-scale graphene integrated circuit. Science 2011, 332, 1294–1297.

    Article  CAS  Google Scholar 

  7. Li, X. F.; Yang, L. M.; Si, M. W.; Li, S. C.; Huang, M. Q.; Ye, P. D.; Wu, Y. Q. Performance potential and limit of MoS2 transistors. Adv. Mater. 2015, 27, 1547–1552.

    Article  CAS  Google Scholar 

  8. Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

    Article  CAS  Google Scholar 

  9. Xuan, Y.; Wu, Y. Q.; Ye, P. D. High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm. IEEE Electron Device Lett. 2008, 29, 294–296.

    Article  CAS  Google Scholar 

  10. Kim, D. H.; Kim, T. W.; Baek, R. H.; Kirsch, P. D.; Maszara, W.; del Alamo, J. A.; Antoniadis, D. A.; Urteaga, M.; Brar, B.; Kwon, H. M. et al. High-performance III-V devices for future logic applications. In 2014 IEEE International Electron Devices Meeting, San Francisco, USA, 2014, pp 25.2.1–25.2. 4.

  11. Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Jin, B.; Kavalieros, J.; Majumdar, A.; Metz, M.; Radosavljevic, M. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 2005, 4, 153–158.

    Article  Google Scholar 

  12. Cavin, R. K.; Lugli, P.; Zhirnov, V. V. Science and engineering beyond Moore’s law. Proc. IEEE 2012, 100, 1720–1749.

    Article  Google Scholar 

  13. Semiconductor Industry Association. 2015 International Technology Roadmap for Semiconductors (ITRS) [Online]. https://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/. (accessed Nov 24, 2022)

  14. Yang, Y. J.; Ding, L.; Han, J.; Zhang, Z. Y.; Peng, L. M. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 2017, 11, 4124–4132.

    Article  CAS  Google Scholar 

  15. Chen, B. Y.; Zhang, P. P.; Ding, L.; Han, J.; Qiu, S.; Li, Q. W.; Zhang, Z. Y.; Peng, L. M. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett. 2016, 16, 5120–5128.

    Article  CAS  Google Scholar 

  16. Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934–9938.

    Article  CAS  Google Scholar 

  17. Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

    Article  CAS  Google Scholar 

  18. Zhao, C. Y.; Zhong, D. L.; Liu, L. J.; Yang, Y. J.; Shi, H. W.; Peng, L. M.; Zhang, Z. Y. Strengthened complementary metal-oxide-semiconductor logic for small-band-gap semiconductor-based high-performance and low-power application. ACS Nano 2020, 14, 15267–15275.

    Article  CAS  Google Scholar 

  19. Sedra, A. S.; Smith, K. C.; Carusone, T. C.; Gaudet, V. Microelectronic Circuits, 8th ed.; Oxford University Press: New York, 2020; pp 1235–1236.

    Google Scholar 

  20. Anderson, B.; Anderson, R. Fundamentals of Semiconductor Devices; McGraw-Hill, Inc.: New York, 2004.

    Google Scholar 

  21. Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris, P. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 256805.

    Article  CAS  Google Scholar 

  22. McEuen, P. L.; Park, J. Y. Electron transport in single-walled carbon nanotubes. MRS Bull. 2004, 29, 272–275.

    Article  CAS  Google Scholar 

  23. Appenzeller, J.; Knoch, J.; Derycke, V.; Martel, R.; Wind, S.; Avouris, P. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 2002, 89, 126801.

    Article  CAS  Google Scholar 

  24. Usuda, K.; Kamata, Y.; Kamimuta, Y.; Mori, T.; Koike, M.; Tezuka, T. High-performance poly-Ge short-channel metal-oxide-semiconductor field-effect transistors formed on SiO2 layer by flash lamp annealing. Appl. Phys. Express 2014, 7, 056501.

    Article  CAS  Google Scholar 

  25. Lind, E.; Persson, A. I.; Samuelson, L.; Wernersson, L. E. Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. Nano Lett. 2006, 6, 1842–1846.

    Article  CAS  Google Scholar 

  26. Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Yenilmez, E.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 2004, 4, 1319–1322.

    Article  CAS  Google Scholar 

  27. Zhang, Z. Y.; Wang, S.; Wang, Z. X.; Ding, L.; Pei, T.; Hu, Z. D.; Liang, X. L.; Chen, Q.; Li, Y.; Peng, L. M. Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 2009, 3, 3781–3787.

    Article  CAS  Google Scholar 

  28. Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.

    Article  CAS  Google Scholar 

  29. Liu, L. J.; Ding, L.; Zhong, D. L.; Han, J.; Wang, S.; Meng, Q. H.; Qiu, C. G.; Zhang, X. Y.; Peng, L. M.; Zhang, Z. Y. Carbon nanotube complementary gigahertz integrated circuits and their applications on wireless sensor interface systems. ACS Nano 2019, 13, 2526–2535.

    CAS  Google Scholar 

  30. Wu, H.; Conrad, N.; Luo, W.; Ye, P. D. First experimental demonstration of Ge CMOS circuits. In 2014 IEEE International Electron Devices Meeting, San Francisco, USA, 2014, pp 9.3.1–9.3.4.

  31. Passlack, M. Off-State current limits of narrow bandgap MOSFETs. IEEE Trans. Electron Devices 2006, 53, 2773–2778.

    Article  CAS  Google Scholar 

  32. Biggs, J.; Myers, J.; Kufel, J.; Ozer, E.; Craske, S.; Sou, A.; Ramsdale, C.; Williamson, K.; Price, R.; White, S. A natively flexible 32-bit Arm microprocessor. Nature 2021, 595, 532–536.

    Article  CAS  Google Scholar 

  33. Mynikko. Intel 8088 - 1979 [Online]. http://www.mynikko.com/CPU/8088.html (accessed Nov 24, 2022).

  34. Gonzalez, R.; Gordon, B. M.; Horowitz, M. A. Supply and threshold voltage scaling for low power CMOS. IEEE J. Solid-State Circuits 1997, 32, 1210–1216.

    Article  Google Scholar 

  35. Zhang, Z. Y.; Wang, S.; Ding, L.; Liang, X. L.; Pei, T.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y. et al. Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett. 2008, 8, 3696–3701.

    Article  CAS  Google Scholar 

  36. Zhong, D. L.; Zhao, C. Y.; Liu, L. J.; Zhang, Z. Y.; Peng, L. M. Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering. Appl. Phys. Lett. 2018, 112, 153109.

    Article  Google Scholar 

  37. Park, J. S.; Jeong, J. K.; Mo, Y. G.; Kim, H. D.; Kim, C. J. Control of threshold voltage in ZnO-based oxide thin film transistors. Appl. Phys. Lett. 2008, 93, 033513.

    Article  Google Scholar 

  38. Huang, M. Q.; Li, S. M.; Zhang, Z. F.; Xiong, X.; Li, X. F.; Wu, Y. Q. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 2017, 12, 1148–1154.

    Article  CAS  Google Scholar 

  39. Liu, Y. D.; Ang, K. W. Monolithically Integrated flexible black phosphorus complementary inverter circuits. ACS Nano 2017, 11, 7416–7423.

    Article  CAS  Google Scholar 

  40. Li, S. L.; Miyazaki, H.; Kumatani, A.; Kanda, A.; Tsukagoshi, K. Low operating bias and matched input-output characteristics in graphene logic inverters. Nano Lett. 2010, 10, 2357–2362.

    Article  CAS  Google Scholar 

  41. Zhang, H.; Li, C.; Wang, J. L.; Hu, W. D.; Zhang, D. W.; Zhou, P. Complementary logic with voltage zero-loss and nano-watt power via configurable MoS2/WSe2 gate. Adv. Funct. Mater. 2018, 28, 1805171.

    Article  Google Scholar 

  42. Wei, N.; Gao, N. F.; Xu, H. T.; Liu, Z.; Gao, L.; Jiang, H. X.; Tian, Y.; Chen, Y. F.; Du, X. D.; Peng, L. M. Wafer-scale fabrication of carbon-nanotube-based CMOS transistors and circuits with high thermal stability. Nano Res. 2022, 15, 9875–9880.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program (No. 2022YFB4401601) and the National Science Foundation of China (Nos. 62225101, 62101008 and U21A6004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Wei or Zhiyong Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Wei, N., Zhang, P. et al. How to build good inverters from nanomaterial-based transistors. Nano Res. 16, 12594–12600 (2023). https://doi.org/10.1007/s12274-023-5678-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5678-y

Keywords

Navigation