Skip to main content
Log in

Conversion reaction lithium metal batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Contemporary social problems, such as energy shortage and environmental pollution, require developing green energy storage technologies in the context of sustainable development. With the application of secondary battery technology becoming widespread, the development of traditional lithium (Li)-ion batteries, which are based on insertion/deinsertion reactions, has hit a bottleneck; instead, conversion-type lithium metal batteries (LMBs) have attracted considerable attention owing to the high theoretical capacity of Li metal anodes. In this review, Li-S, Li-O2, and Li-SOCl2 batteries are used as examples to summarize LMBs based on their conversion reactions from the perspectives of cathode material, anode material, electrolyte, separator, and current collector. Key challenges exist regarding the conversion reactions of various batteries. To achieve the optimum performance and improve the application effect, several improvement strategies have been proposed in relation to reasonable designs of next-generation high-performance rechargeable batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, H. Q.; He, Y. N.; Cao, K. Z.; Jiang, Y.; Liu, X. G.; Jing, Q. S.; Jiao, L. F. Activating commercial Al pellets by replacing the passivation layer for high-performance half/full Li-ion batteries. Chem. Eng. J. 2022, 433, 133572.

    Article  CAS  Google Scholar 

  2. Guo, Y. P.; Li, H. Q.; Zhai, T. Y. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 2017, 29, 1700007.

    Article  Google Scholar 

  3. Xiang, J. W.; Yang, L. Y.; Yuan, L. X.; Yuan, K.; Zhang, Y.; Huang, Y. Y.; Lin, J.; Pan, F.; Huang, Y. H. Alkali-metal anodes: From lab to market. Joule 2019, 3, 2334–2363.

    Article  CAS  Google Scholar 

  4. Xu, X. Y.; Liu, Y. Y.; Hwang, J. Y.; Kapitanova, O. O.; Song, Z. X.; Sun, Y. K.; Matic, A.; Xiong, S. Z. Role of Li-ion depletion on electrode surface: Underlying mechanism for electrodeposition behavior of lithium metal anode. Adv. Energy Mater. 2020, 10, 2002390.

    Article  CAS  Google Scholar 

  5. Kondori, A.; Esmaeilirad, M.; Harzandi, A. M.; Amine, R.; Saray, M. T.; Yu, L.; Liu, T. C.; Wen, J. G.; Shan, N. N.; Wang, H. H. et al. A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte. Science 2023, 379, 499–505.

    Article  CAS  Google Scholar 

  6. Mistry, A.; Heenan, T.; Smith, K.; Shearing, P.; Mukherjee, P. P. Asphericity can cause nonuniform lithium intercalation in battery active particles. ACS Energy Lett. 2022, 7, 1871–1879.

    Article  CAS  Google Scholar 

  7. Mukaida, M.; Kirihara, K.; Ebihara, T.; Wei, Q. S. Gram-scale polymer-based thermoelectric module for charging Li-ion batteries. Mater. Today Energy 2023, 32, 101238.

    Article  CAS  Google Scholar 

  8. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  CAS  Google Scholar 

  9. Yu, Z. Y.; Shao, Y.; Ma, L. P.; Liu, C. Z.; Gu, C. Y.; Liu, J. J.; He, P.; Li, M. X.; Nie, Z. X.; Peng, Z. Q. Revealing the sulfur redox paths in a Li-S battery by an in situ hyphenated technique of electrochemistry and mass spectrometry. Adv. Mater. 2022, 34, 2106618.

    Article  CAS  Google Scholar 

  10. Li, S. Q.; Leng, D.; Li, W. Y.; Qie, L.; Dong, Z. H.; Cheng, Z. Q.; Fan, Z. Y. Recent progress in developing Li2S cathodes for Li-S batteries. Energy Storage Mater. 2020, 27, 279–296.

    Article  Google Scholar 

  11. Huang, Y. P.; Sun, X. G.; Wang, J.; Li, X.; Chen, W.; Wei, C. C.; Hu, H.; Liang, G. D. Inhibiting shuttle effect of lithium sulfur batteries by introducing hydroxylated multi-walled carbon nanotube. Acta Mater. Compositae Sin. 2019, 36, 1335–1341.

    Google Scholar 

  12. Dong, S. H.; Liu, H. J.; Hu, Y. Z.; Chong, S. K. Cathode materials for rechargeable lithium-sulfur batteries: Current progress and future prospects. ChemElectroChem 2022, 9, e202101564.

    Article  CAS  Google Scholar 

  13. Zheng, M. B.; Chi, Y.; Hu, Q.; Tang, H.; Jiang, X. L.; Zhang, L.; Zhang, S. T.; Pang, H.; Xu, Q. Carbon nanotube-based materials for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 17204–17241.

    Article  CAS  Google Scholar 

  14. Zhang, Z. J.; Fang, Z. H.; Xiang, Y. Y.; Liu, D.; Xie, Z. Z.; Qu, D. Y.; Sun, M. L.; Tang, H. L.; Li, J. S. Cellulose-based material in lithium-sulfur batteries: A review. Carbohyd. Polym. 2021, 255, 117469.

    Article  CAS  Google Scholar 

  15. Sun, W. H.; Song, Z. H.; Feng, Z. X.; Huang, Y. Q.; Xu, Z. J.; Lu, Y. C.; Zou, Q. L. Carbon-nitride-based materials for advanced lithium-sulfur batteries. Nano-Micro Lett. 2022, 14, 222.

    Article  CAS  Google Scholar 

  16. Xin, S.; Chang, Z. W.; Zhang, X. B.; Guo, Y. G. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl. Sci. Rev. 2017, 4, 54–70.

    Article  CAS  Google Scholar 

  17. Chen, S. R.; Zhai, Y. P.; Xu, G. L.; Jiang, Y. X.; Zhao, D. Y.; Li, J. T.; Huang, L.; Sun, S. G. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery. Electrochim. Acta 2011, 56, 9549–9555.

    Article  CAS  Google Scholar 

  18. Nojabaee, M.; Sievert, B.; Schwan, M.; Schettler, J.; Warth, F.; Wagner, N.; Milow, B.; Friedrich, K. A. Ultramicroporous carbon aerogels encapsulating sulfur as the cathode for lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 6508–6519.

    Article  CAS  Google Scholar 

  19. Choudhury, S.; Krüner, B.; Massuti-Ballester, P.; Tolosa, A.; Prehal, C.; Grobelsek, I.; Oskar, P.; Borchardt, L.; Presser, V. Microporous novolac-derived carbon beads/sulfur hybrid cathode for lithium-sulfur batteries. J. Power Sources 2017, 357, 198–208.

    Article  CAS  Google Scholar 

  20. Zhu, W. L.; Lei, D.; Li, Y. P.; Zhang, F. X.; Guo, J. L. Hierarchical, nitrogenous hollow carbon spheres filled with porous carbon nanosheets for use as efficient sulfur hosts for lithium-sulfur batteries. J. Alloys Compd. 2020, 836, 155295.

    Article  CAS  Google Scholar 

  21. Xing, Y. L.; Zhang, M. G.; Guo, J.; Fang, X. Y.; Hu, X. Q.; Yan, M. Y. Simple synthesis of PEG@CeO2-CNT/S composite materials as anode materials for lithium sulfur batteries. J. Phys. Chem. Solids 2022, 169, 110832.

    Article  CAS  Google Scholar 

  22. Li, F. L.; Si, Y. B.; Liu, B. J.; Li, Z. J.; Fu, Y. Z. Lithium benzenedithiolate catholytes for rechargeable lithium batteries. Adv. Funct. Mater. 2019, 29, 1902223.

    Article  Google Scholar 

  23. Xiao, Q. H. Q.; Li, G. R.; Li, M. J.; Liu, R. P.; Li, H. B.; Ren, P. F.; Dong, Y.; Feng, M.; Chen, Z. W. Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium-sulfur batteries. J. Energy Chem. 2020, 44, 61–67.

    Article  Google Scholar 

  24. Pan, H.; Cheng, Z. B.; Chen, J. Q.; Wang, R. H.; Li, X. J. High sulfur content and volumetric capacity promised by a compact freestanding cathode for high-performance lithium-sulfur batteries. Energy Storage Mater. 2020, 27, 435–442.

    Article  Google Scholar 

  25. Tsao, Y.; Gong, H. X.; Chen, S. C.; Chen, G.; Liu, Y. Z.; Gao, T. Z.; Cui, Y.; Bao, Z. A nickel-decorated carbon flower/sulfur cathode for lean-electrolyte lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2101449.

    Article  CAS  Google Scholar 

  26. Zhou, F.; Qiao, Z. S.; Zhang, Y. G.; Xu, W. J.; Zheng, H. F.; Xie, Q. S.; Luo, Q.; Wang, L. S.; Qu, B. H.; Peng, D. L. Bimetallic MOF-derived CNTs-grafted carbon nanocages as sulfur host for high-performance lithium-sulfur batteries. Electrochim. Acta 2020, 349, 136378.

    Article  CAS  Google Scholar 

  27. Zhang, Z. Y.; Chen, C.; Xu, J.; Lin, Z.; Lin, Z. Nanoporous cobalt-nitrogen-carbon catalyst-based multifunctional interlayer for enhanced Li-S battery performance. ACS Appl. Energy Mater. 2022, 5, 4691–4697.

    Article  CAS  Google Scholar 

  28. Deng, D. R.; Li, C.; Weng, J. C.; Fan, X. H.; Chen, Z. J.; Yang, G.; Li, Y.; Wu, Q. H.; Zheng, M. S.; Dong, Q. F. Thin nano cages with limited hollow space for ultrahigh sulfur loading Lithium-Sulfur batteries. ACS Appl. Mater. Interfaces 2022, 14, 45414–45422.

    Article  CAS  Google Scholar 

  29. Rafie, A.; Pereira, R.; Shamsabadi, A. A.; Kalra, V. In operando FTIR study on the effect of sulfur chain length in sulfur copolymer-based Li-S batteries. J. Phys. Chem. C 2022, 126, 12327–12338.

    Article  CAS  Google Scholar 

  30. Pang, Y. P.; Xu, Y.; Li, Y. T.; Xu, F.; Sun, L. X.; Yang, J. H.; Li, H. W.; Zheng, S. Y. Carbon/Sulfur composites stabilized with Nano-TiNi for high-performance Li-S battery cathodes. ACS Appl. Energy Mater. 2019, 2, 1537–1543.

    Article  CAS  Google Scholar 

  31. Li, X. C.; Zhang, Y.; Wang, S. T.; Liu, Y.; Ding, Y.; He, G. H.; Jiang, X. B.; Xiao, W.; Yu, G. H. Scalable high-areal-capacity Li-S batteries enabled by sandwich-structured hierarchically porous membranes with intrinsic polysulfide adsorption. Nano Lett. 2020, 20, 6922–6929.

    Article  CAS  Google Scholar 

  32. Zhu, T. Y.; Sha, Y.; Zhang, H. W.; Huang, Y. C.; Gao, X. H.; Ling, M.; Lin, Z. Embedding Fe3C and Fe3N on a nitrogen-doped carbon nanotube as a catalytic and anchoring center for a high-areal-capacity Li-S battery. ACS Appl. Mater. Interfaces 2021, 13, 20153–20161.

    Article  CAS  Google Scholar 

  33. Faheem, M.; Li, W. L.; Ahmad, N.; Yang, L.; Tufail, M. K.; Zhou, Y. D.; Zhou, L.; Chen, R. J.; Yang, W. Chickpea derived Co nanocrystal encapsulated in 3D nitrogen-doped mesoporous carbon: Pressure cooking synthetic strategy and its application in lithium-sulfur batteries. J. Colloid Interface Sci. 2021, 585, 328–336.

    Article  CAS  Google Scholar 

  34. Xia, Y.; Fang, R. Y.; Xiao, Z.; Huang, H.; Gan, Y. P.; Yan, R. J.; Lu, X. H.; Liang, C.; Zhang, J.; Tao, X. Y. et al. Confining sulfur in N-doped porous carbon microalgaes for advanced lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 23782–23791.

    Article  CAS  Google Scholar 

  35. Chu, J. H.; Yu, Q. Y.; Han, K.; Xing, L. D.; Gu, C.; Li, Y.; Bao, Y. P.; Wang, W. Yolk-shell structured FeS/MoS2@ nitrogen-doped carbon nanocubes with sufficient internal void space as an ultrastable anode for potassium-ion batteries. J. Mater. Chem. A 2020, 8, 23983–23993.

    Article  CAS  Google Scholar 

  36. Yuan, Q.; Chen, Y. X.; Li, A.; Li, Y. X.; Chen, X. H.; Jia, M. Q.; Song, H. H. Polysulfides anchoring and enhanced electrochemical kinetics of 3D flower-like FeS/carbon assembly materials for lithium-sulfur battery. Appl. Surf. Sci. 2020, 508, 145286.

    Article  CAS  Google Scholar 

  37. Zhen, M. M.; Jiang, K. L.; Guo, S. Q.; Shen, B. X.; Liu, H. L. Suitable lithium polysulfides diffusion and adsorption on CNTs@TiO2-bronze nanosheets surface for high-performance lithium-sulfur batteries. Nano Res. 2022, 15, 933–941.

    Article  CAS  Google Scholar 

  38. Yang, Y.; Yu, G. H.; Cha, J. J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z. N.; Cui, Y. Improving the performance of lithium-sulfur batteries by conductive polymer coating. ACS Nano 2011, 5, 9187–9193.

    Article  CAS  Google Scholar 

  39. Zhou, W. D.; Wang, C. M.; Zhang, Q. L.; Abruña, H. D.; He, Y.; Wang, J. W.; Mao, S. X.; Xiao, X. C. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.

    Article  Google Scholar 

  40. Zhao, B.; Jiang, Y.; Xie, J. W.; Ling, X. T.; Ding, Y. W.; Huang, S. S.; Chen, Z. W.; Jiang, Y. A double-shelled structure confining sulfur for lithium-sulfur batteries. J. Alloys Compd. 2019, 811, 151434.

    Article  CAS  Google Scholar 

  41. He, B.; Li, W. C.; Chen, Z. Y.; Shi, L.; Zhang, Y.; Xia, J. L.; Lu, A. H. Multilevel structured carbon film as cathode host for Li-S batteries with superhigh-areal-capacity. Nano Res. 2021, 14, 1273–1279.

    Article  CAS  Google Scholar 

  42. Li, H. L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999, 402, 276–279.

    Article  CAS  Google Scholar 

  43. Zhang, X.; Chen, A.; Zhong, M.; Zhang, Z. H.; Zhang, X.; Zhou, Z.; Bu, X. H. Metal-organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energy Rev. 2019, 2, 29–104.

    Article  CAS  Google Scholar 

  44. Xu, G. Y.; Ding, B.; Shen, L. F.; Nie, P.; Han, J. P.; Zhang, X. G. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J. Mater. Chem. A 2013, 1, 4490–4496.

    Article  CAS  Google Scholar 

  45. Yu, Y.; Zhan, Z. H.; Tang, P. J.; Xu, Q. Y.; Fan, Q.; Wang, W.; Shen, K. Promoting polysulfide redox kinetics by Co9S8 nanoparticle-embedded in N-doped carbon nanotube hollow polyhedron for lithium sulfur batteries. J. Alloys Compd. 2021, 869, 159306.

    Article  CAS  Google Scholar 

  46. Yang, D. W.; Liang, Z. F.; Tang, P. Y.; Zhang, C. Q.; Tang, M. X.; Li, Q. Z.; Biendicho, J. J.; Li, J. S.; Heggen, M.; Dunin-Borkowski, R. E. et al. A high conductivity 1D π-d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium-sulfur batteries. Adv. Mater. 2022, 34, 2108835.

    Article  CAS  Google Scholar 

  47. Hu, W. H.; Zheng, M. B.; Xu, B. Y.; Wei, Y.; Zhu, W.; Li, Q.; Pang, H. Design of hollow carbon-based materials derived from metal-organic frameworks for electrocatalysis and electrochemical energy storage. J. Mater. Chem. A 2021, 9, 3880–3917.

    Article  CAS  Google Scholar 

  48. Wei, A. K.; Wang, L.; Li, Z. Metal-organic framework derived binary-metal oxide/MXene composite as sulfur host for highperformance lithium-sulfur batteries. J. Alloys Compd. 2022, 899, 163369.

    Article  CAS  Google Scholar 

  49. Hong, X. J.; Song, C. L.; Yang, Y.; Tan, H. C.; Li, G. H.; Cai, Y. P.; Wang, H. X. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries. ACS Nano 2019, 13, 1923–1931.

    CAS  Google Scholar 

  50. Zhou, H. Y.; Sui, Z. Y.; Liu, S.; Wang, H. Y.; Han, B. H. Nanostructured porous carbons derived from nitrogen-doped graphene nanoribbon aerogels for lithium-sulfur batteries. J. Colloid Interface Sci. 2019, 541, 204–212.

    Article  CAS  Google Scholar 

  51. Gao, L.; Cao, M. L.; Fu, Y. Q.; Zhong, Z. C.; Shen, Y.; Wang, M. K. Hierarchical TiO2 spheres assisted with graphene for a high performance lithium-sulfur battery. J. Mater. Chem. A 2016, 4, 16454–16461.

    Article  CAS  Google Scholar 

  52. Li, R. L.; Liu, Q.; Yue, W. B. CeO2 nanoparticles decorated CMK-3 as high-performance sulfur host for Li-S batteries. J. Alloys Compd. 2022, 928, 167179.

    Article  CAS  Google Scholar 

  53. Adi, A.; Taniguchi, L. Porous-crystalline C/Fe3O4 microspheres with highly accessible adsorptive/catalytic and conductive interfaces to manipulate polysulfide shuttling in Li-S batteries. Electrochim. Acta 2022, 435, 141385.

    Article  CAS  Google Scholar 

  54. Chen, Z. H.; Hu, Y. X.; Liu, W.; Yu, F.; Yu, X. F.; Mei, T.; Yu, L.; Wang, X. B. Three-dimensional engineering of sulfur/MnO2 composites for high-rate lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 38394–38404.

    Article  CAS  Google Scholar 

  55. Zhao, X. Q.; Sun, X. H.; Guo, R. S.; Li, F. Y.; Li, T. T.; Wang, S. H.; Wang, S. Bifunctional tin modified SnO2 nanospheres embedded biomass-derived carbon network for polysulfides adsorption-conversion in lithium-sulfur batteries. J. Alloys Compd. 2022, 895, 162578.

    Article  CAS  Google Scholar 

  56. Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 2016, 7, 13065.

    Article  CAS  Google Scholar 

  57. Wang, R. C.; Luo, C.; Wang, T. S.; Zhou, G. M.; Deng, Y. Q.; He, Y. B.; Zhang, Q. F.; Kang, F. Y.; Lv, W.; Yang, Q. H. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries. Adv. Mater. 2020, 32, 2000315.

    Article  CAS  Google Scholar 

  58. Zhou, J.; Lin, N.; Cai, W. L.; Guo, C.; Zhang, K. L.; Zhou, J. B.; Zhu, Y. C.; Qian, Y. T. Synthesis of S/CoS2 nanoparticles-embedded N-doped carbon polyhedrons from polyhedrons ZIF-67 and their properties in lithium-sulfur batteries. Electrochim. Acta 2016, 218, 243–251.

    Article  CAS  Google Scholar 

  59. Zhang, S. S.; Tran, D. T. Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium-sulphur batteries. J. Mater. Chem. A 2016, 4, 4371–4374.

    Article  CAS  Google Scholar 

  60. Yang, H. J.; Feng, W. J.; Pu, Z. S.; Chen, J. Z.; Zhao, W.; Huang, Z. Y. Application of CNTs-MoS2/SnO2 p-n heterojunction nanocomposites in lithium-sulfur batteries. Ferroelectrics 2022, 596, 1–12.

    Article  CAS  Google Scholar 

  61. Xu, H. H.; Manthiram, A. Hollow cobalt sulfide polyhedra-enabled long-life, highareal-capacity lithium-sulfur batteries. Nano Energy 2017, 33, 124–129.

    Article  CAS  Google Scholar 

  62. Zhou, W.; Chen, M. Z.; Zhao, D. K.; Wu, Q. K.; Dan, J. C.; Zhu, C. H.; Qiu, W. W.; Lei, W.; Ma, L. J.; Li, L. G. Confined Co9S8 nanocrystals into N/S-Co-doped carbon nanofibers as a chainmail-like electrocatalyst for high-performance lithium-sulfur batteries with high sulfur loading. J. Colloid Interface Sci. 2022, 625, 187–196.

    Article  CAS  Google Scholar 

  63. Zhao, Z. X.; Yi, Z. L.; Li, H. J.; Pathak, R.; Cheng, X. Q.; Zhou, J. L.; Wang, X. M.; Qiao, Q. Q. Understanding the modulation effect and surface chemistry in a heteroatom incorporated graphene-like matrix toward high-rate lithium-sulfur batteries. Nanoscale 2021, 13, 14777–14784.

    Article  CAS  Google Scholar 

  64. Yu, J.; Xiao, J. W.; Li, A. R.; Yang, Z.; Zeng, L.; Zhang, Q. F.; Zhu, Y. J.; Guo, L. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for highperformance Li-S Batteries. Angew. Chem., Int. Ed. 2020, 59, 13071–13078.

    Article  CAS  Google Scholar 

  65. Han, Z. Y.; Gao, R. H.; Jia, Y. Y.; Zhang, M. T.; Lao, Z. J.; Chen, B.; Zhang, Q.; Li, C.; Lv, W.; Zhou, G. M. Catalytic effect in Li-S batteries: From band theory to practical application. Mater. Today 2022, 57, 84–120.

    Article  CAS  Google Scholar 

  66. Zhang, T.; Zhou, H. S. From Li-O2 to Li-air batteries: Carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen. Angew. Chem. 2012, 124, 11224–11229.

    Article  Google Scholar 

  67. Chao, F. F.; Wang, B. X.; Ren, J. J.; Lu, Y. W.; Zhang, W. R.; Wang, X. Z.; Cheng, L.; Lou, Y. B.; Chen, J. X. Micro-meso-macroporous FeCo-N-C derived from hierarchical bimetallic FeCo-ZIFs as cathode catalysts for enhanced Li-O2 batteries performance. J. Energy Chem. 2019, 35, 212–219.

    Article  Google Scholar 

  68. Li, X. L.; Huang, J.; Faghri, A. A critical review of macroscopic modeling studies on Li-O2 and Li-air batteries using organic electrolyte: Challenges and opportunities. J. Power Sources. 2016, 332, 420–446.

    Article  CAS  Google Scholar 

  69. Liu, L. L.; Liu, Y. H.; Wang, C.; Peng, X. H.; Fang, W. W.; Hou, Y. Y.; Wang, J.; Ye, J. L.; Wu, Y. P. Li2O2 formation electrochemistry and its influence on oxygen reduction/evolution reaction kinetics in aprotic Li-O2 batteries. Small Methods 2022, 6, 2101280.

    Article  CAS  Google Scholar 

  70. Li, Y.; Zhang, R.; Chen, B.; Wang, N.; Sha, J. W.; Ma, L. Y.; Zhao, D. D.; Liu, E. Z.; Zhu, S.; Shi, C. S. et al. Induced construction of large-area amorphous Li2O2 film via elemental co-doping and spatial confinement to achieve high-performance Li-O2 batteries. Energy Storage Mater. 2022, 44, 285–295.

    Article  Google Scholar 

  71. Zhang, Z. J.; Xiao, X.; Yu, W. T.; Zhao, Z. X.; Tan, P. Reacquainting the sudden-death and reaction routes of Li-O2 batteries by ex situ observation of Li2O2 distribution inside a highly ordered air electrode. Nano Lett. 2022, 22, 7527–7534.

    Article  CAS  Google Scholar 

  72. McCloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J. Am. Chem. Soc. 2011, 133, 18038–18041.

    Article  CAS  Google Scholar 

  73. Jung, W. B.; Park, H.; Jang, J. S.; Kim, D. Y.; Kim, D. W.; Lim, E.; Kim, J. Y.; Choi, S.; Suk, J.; Kang, Y. K. et al. Polyelemental nanoparticles as catalysts for a Li-O2 battery. ACS Nano. 2021, 15, 4235–4244.

    Article  CAS  Google Scholar 

  74. Ma, J.; Zhang, Y.; Yuan, M. W.; Nan, C. Y. Li ion exchanged α-MnO2 nanowires as efficient catalysts for Li-O2 batteries. Chem. Res. Chin. Univ. 2020, 36, 1261–1264.

    Article  CAS  Google Scholar 

  75. Black, R.; Lee, J. H.; Adams, B.; Mims, C. A.; Nazar, L. F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew. Chem., Int. Ed. 2013, 52, 392–396.

    Article  CAS  Google Scholar 

  76. Bharadwaj, N.; Das, S.; Pathak, B. Role of morphology of platinum-based nanoclusters in ORR/OER activity for nonaqueous Li-air battery applications. ACS Appl. Energy Mater. 2022, 5, 12561–12570.

    Article  CAS  Google Scholar 

  77. Li, Z. X.; Song, K. F.; Wang, K. B.; Chen, L.; Wei, D. X.; Lv, Y.; Yu, Y. W.; Yang, B. Q.; Yuan, L. F.; Hu, X. L. Fabrication of carbon cloth supporting MnOx and its application in Li-O2 batteries. Nanotechnology 2020, 31, 165709.

    Article  CAS  Google Scholar 

  78. Liu, M. R.; Sun, K. L.; Zhang, Q. H.; Tang, T.; Huang, L. L.; Li, X. H.; Zeng, X. Y.; Hu, J. S.; Liao, S. J. Rationally designed three-dimensional N-doped graphene architecture mounted with Ru nanoclusters as a high-performance air cathode for lithium-oxygen batteries. ACS Sustain. Chem. Eng. 2020, 8, 6109–6117.

    Article  CAS  Google Scholar 

  79. Zhao, W.; Wang, J.; Yin, Y.; Li, B. Y.; Huang, X. S.; Zhao, L. L.; Qian, L. Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li-O2 batteries. J. Colloid Interface Sci. 2020, 564, 28–36.

    Article  CAS  Google Scholar 

  80. Jiang, J.; He, P.; Tong, S. F.; Zheng, M. B.; Lin, Z. X.; Zhang, X. P.; Shi, Y.; Zhou, H. S. Ruthenium functionalized graphene aerogels with hierarchical and three-dimensional porosity as a freestanding cathode for rechargeable lithium-oxygen batteries. NPG Asia Mater. 2016, 8, e239.

    Article  CAS  Google Scholar 

  81. Li, F. J.; Chen, I.; Tang, D. M.; Jian, Z. L.; Liu, C.; Golberg, D.; Yamada, A.; Zhou, H. S. Performance-improved Li-O2 battery with Ru nanoparticles supported on binder-free mufti-walled carbon nanotube paper as cathode. Energy Environ. Sci. 2014, 7, 1648–1652.

    Article  CAS  Google Scholar 

  82. Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

    Article  CAS  Google Scholar 

  83. Sevim, M.; Şener, T.; Metin, Ö. Monodisperse MPd (M: Co, Ni, Cu) alloy nanoparticles supported on reduced graphene oxide as cathode catalysts for the lithium-air battery. Int. J. Hydrogen Energy 2015, 40, 10876–10882.

    Article  CAS  Google Scholar 

  84. Dong, H. Y.; Wang, Y. W.; Tang, P. P.; Wang, H.; Li, K.; Yin, Y. H.; Yang, S. T. A novel strategy for improving performance of lithium-oxygen batteries. J. Colloid Interface Sci. 2021, 584, 246–252.

    Article  CAS  Google Scholar 

  85. Li, J. D.; Huang, S. C.; Zhang, G. Y.; Li, Z.; Tong, S. F.; Wang, J.; Wu, M. M. Stabilization of binder-free vanadium oxide-based oxygen electrodes using Pd clusters for Li-O2 batteries. Chem. Commun. 2020, 56, 1823–1826.

    Article  CAS  Google Scholar 

  86. Ionescu, M. I.; Laforgue, A. Synthesis of nitrogen-doped carbon nanotubes directly on metallic foams as cathode material with high mass load for lithium-air batteries. Thin Solid Films 2020, 709, 138211.

    Article  CAS  Google Scholar 

  87. Li, J.; Huang, L. L.; Duan, D. C.; Li, X. H.; Song, H. Y.; Liao, S. J. Biogelatin-derived and N, S-Codoped 3D network carbon materials anchored with RuO2 as an efficient cathode for rechargeable Li-O2 batteries. J. Phys. Chem. C 2021, 125, 21914–21921.

    Article  CAS  Google Scholar 

  88. Xu, J. J.; Chang, Z. W.; Wang, Y.; Liu, D. P.; Zhang, Y.; Zhang, X. B. Cathode surface-induced, solvation-mediated, micrometer-sized Li2O2 cycling for Li-O2 batteries. Adv. Mater. 2016, 28, 9620–9628.

    Article  CAS  Google Scholar 

  89. Yilmaz, E.; Yogi, C.; Yamanaka, K.; Ohta, T.; Byon, H. R. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. Nano Lett. 2013, 13, 4679–4684.

    Article  CAS  Google Scholar 

  90. Dai, W. R.; Liu, Y.; Wang, M.; Lin, M.; Lian, X.; Luo, Y. N.; Yang, J. L.; Chen, W. Monodispersed ruthenium nanoparticles on nitrogen-doped reduced graphene oxide for an efficient lithium-oxygen battery. ACS Appl. Mater Interfaces 2021, 13, 19915–19926.

    Article  CAS  Google Scholar 

  91. Zhao, L. Y.; Xing, Y.; Chen, N.; Lai, J. N.; Li, L.; Wu, F.; Chen, R. J. A robust cathode of RuO2 nH2O clusters anchored on the carbon nanofibers for ultralong-life lithium-oxygen batteries. J. Power Sources 2020, 463, 228161.

    Article  CAS  Google Scholar 

  92. Zhuang, Q.; Ma, N.; Yin, Z. H.; Yang, X.; Yin, Z.; Gao, J.; Xu, Y.; Gao, Z. R.; Wang, H.; Kang, J. L. et al. Rich surface oxygen vacancies of MnO2 for enhancing electrocatalytic oxygen reduction and oxygen evolution reactions. Adv. Energy Sustain. Res. 2021, 2, 2100030.

    Article  CAS  Google Scholar 

  93. Tian, Y. H.; Xu, L.; Qiu, J. X.; Liu, X. H.; Zhang, S. Q. Rational design of sustainable transition metal-based bifunctional electrocatalysts for oxygen reduction and evolution reactions. Sustain. Mater. Technol. 2020, 25, e00204.

    CAS  Google Scholar 

  94. Meng, Z. H.; Chen, N.; Cai, S. C.; Wang, R.; Guo, W. B.; Tang, H. L. Co-N-doped hierarchically ordered macro/mesoporous carbon as bifunctional electrocatalyst toward oxygen reduction/evolution reactions. Int. J. Energy Res. 2021, 45, 6250–6261.

    Article  CAS  Google Scholar 

  95. Huang, C. F.; Zhang, Y. S.; Li, X. W.; Cao, H. J.; Guo, Y. M.; Zhang, C. H. Mn-incorporated Co3O4 bifunctional electrocatalysts for zinc-air battery application: An experimental and DFT study. Appl. Catal. B:Environ. 2022, 319, 121909.

    Article  CAS  Google Scholar 

  96. Oukahou, S.; Elomrani, A.; Maymoun, M.; Sbiaai, K.; Hasnaoui, A. Investigation of LiMn1−xMxPO4 (M = Ni, Fe) as cathode materials for Li-ion batteries using density functional theory. Comput. Mater. Sci. 2022, 202, 111006.

    Article  CAS  Google Scholar 

  97. Tham, N. N.; Ge, X. M.; Yu, A. S.; Li, B.; Zong, Y.; Liu, Z. L. Porous calcium-manganese oxide/carbon nanotube microspheres as efficient oxygen reduction catalysts for rechargeable zinc-air batteries. Inorg. Chem. Front. 2021, 8, 2052–2060.

    Article  CAS  Google Scholar 

  98. Mechili, M.; Vaitsis, C.; Argirusis, N.; Pandis, P. K.; Sourkouni, G.; Argirusis, C. Research progress in transition metal oxide based bifunctional electrocatalysts for aqueous electrically rechargeable zinc-air batteries. Renew. Sustain. Energy Rev. 2022, 156, 111970.

    Article  CAS  Google Scholar 

  99. Worku, A. K.; Ayele, D. W.; Habtu, N. G.; Teshager, M. A.; Workineh, Z. G. Recent progress in MnO2-based oxygen electrocatalysts for rechargeable zinc-air batteries. Mater. Today Sustainability 2021, 13, 100072.

    Article  Google Scholar 

  100. Sasidharachari, K.; Cho, K. Y.; Yoon, S. Mesoporous ZnMn2O4 nanospheres as a nonprecious bifunctional catalyst for Zn-Air batteries. ACS Appl. Energy Mater. 2020, 3, 3293–3301.

    Article  CAS  Google Scholar 

  101. Cheng, F. Y.; Su, Y.; Liang, J.; Tao, Z. L.; Chen, J. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898–905.

    Article  CAS  Google Scholar 

  102. Victoria, A. D.; Mercy, F. T. Enhancing electricity generation with the use of KMnO4 as an electron acceptor in microbial fuel cell. Jordan J. Biol. Sci. 2021, 14, 229–238.

    Article  CAS  Google Scholar 

  103. Song, Z. S.; Liu, X. R.; Ding, J.; Liu, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Poly(acrylic acid)-based composite gel polymer electrolytes with high mechanical strength and ionic conductivity toward flexible zinc-air batteries with long cycling lifetime. ACS Appl. Mater. Interfaces 2022, 14, 49801–49810.

    Article  CAS  Google Scholar 

  104. Palani, R.; Wu, Y. S.; Wu, S. H.; Jose, R.; Yang, C. C. Metal-organic framework-derived ZrO2/NiCo2O4/graphene mesoporous cake-like structure as enhanced bifunctional electrocatalytic cathodes for long life Li-O2 batteries. Electrochim. Acta 2022, 412, 140147.

    Article  CAS  Google Scholar 

  105. Guo, X.; Zhang, J. Q.; Zhao, Y. F.; Sun, B.; Liu, H.; Wang, G. X. Ultrathin porous NiCo2O4 nanosheets for lithium-oxygen batteries: An excellent performance deriving from an enhanced solution mechanism. ACS Appl. Energy Mater. 2019, 2, 4215–4223.

    Article  CAS  Google Scholar 

  106. Cao, D. Q.; Wang, Q. Z.; Yin, X.; Sun, Y. D.; Ma, M.; Wu, Y. P.; Liu, X. J. Co-N-doped carbon as an efficient catalyst for lithium-oxygen batteries. Energy Fuels 2020, 34, 10225–10231.

    Article  CAS  Google Scholar 

  107. Wang, J. B.; Fan, M. L.; Tu, W. M.; Chen, K.; Shen, Y. F.; Zhang, H. N. In situ growth of Co3O4 on nitrogen-doped hollow carbon nanospheres as air electrode for lithium-air batteries. J. Alloys Compd. 2019, 777, 944–953.

    Article  CAS  Google Scholar 

  108. Liu, Z. J.; Zhao, Z. W.; Zhang, W.; Huang, Y.; Liu, Y.; Wu, D. L.; Wang, L.; Chou, S. L. Toward high-performance lithium-oxygen batteries with cobalt-based transition metal oxide catalysts: Advanced strategies and mechanical insights. InfoMat 2022, 4, e12260.

    Article  CAS  Google Scholar 

  109. Pan, J.; Tian, X. L.; Zaman, S.; Dong, Z. H.; Liu, H. F.; Park, H. S.; Xia, B. Y. Recent progress on transition metal oxides as bifunctional catalysts for lithium-air and zinc-air batteries. Batteries Supercaps 2019, 2, 336–347.

    Article  CAS  Google Scholar 

  110. Zahoor, A.; Faizan, R.; Elsaid, K.; Hashmi, S.; Butt, F. A.; Ghouri, Z. K. Synthesis and experimental investigation of δ-MnO2/N-rGO nanocomposite for Li-O2 batteries applications. Chem. Eng. J. Adv. 2021, 7, 100115.

    Article  CAS  Google Scholar 

  111. Lang, X. S.; Zhang, Y. Y.; Cai, K. D.; Li, L.; Wang, Q. S.; Zhang, Q. G. High performance CoO nanospheres catalyst synthesized by DC arc discharge plasma method as air electrode for lithium-oxygen battery. Ionics 2019, 25, 35–40.

    Article  CAS  Google Scholar 

  112. Wang, Z. L.; Zou, L.; Guo, S.; Sun, M. J.; Chen, Y.; Chi, B.; Pu, J.; Li, J. Porous double-doped perovskite La0.6Ca0.4Fe0.8Ni0.2O3 nanotubes as highly efficient bifunctional catalysts for lithium-oxygen batteries. J. Power Sources 2020, 468, 228362.

    Article  CAS  Google Scholar 

  113. Du, D. Y.; Zheng, R. X.; He, M.; Zhao, C.; Zhou, B.; Li, R. J.; Xu, H. Y.; Wen, X. J.; Zeng, T.; Shu, C. Z. A-site cationic defects induced electronic structure regulation of LaMnO3 perovskite boosts oxygen electrode reactions in aprotic lithium-oxygen batteries. Energy Storage Mater. 2021, 43, 293–304.

    Article  Google Scholar 

  114. Wen, X. J.; Ran, Z. Q.; Zheng, R. X.; Du, D. Y.; Zhao, C.; Li, R. J.; Xu, H. Y.; Zeng, T.; Shu, C. Z. NiSe2@NiO heterostructure with optimized electronic structure as efficient electrocatalyst for lithium-oxygen batteries. J. Alloys Compd. 2022, 901, 163703.

    Article  CAS  Google Scholar 

  115. Lee, H.; Lee, D. J.; Kim, M.; Kim, H.; Cho, Y. S.; Kwon, H. J.; Lee, H. C.; Park, C. R.; Im, D. High-energy density Li-O2 battery with a polymer electrolyte-coated CNT electrode via the layer-by-layer method. ACS Appl. Mater. Interfaces 2020, 12, 17385–17395.

    Article  CAS  Google Scholar 

  116. Xue, H. R.; Ma, Y.; Wang, T.; Gong, H.; Gao, B.; Fan, X. L.; Yan, J. J.; Meng, X. G.; Zhang, S. T.; He, J. P. Hollow mesoporous Fe2O3 nanospindles/CNTs composite: An efficient catalyst for highperformance Li-O2 batteries. Front. Chem. 2019, 7, 511.

    Article  CAS  Google Scholar 

  117. Zhang, X. H.; Chen, C. G.; Chen, X.; Wang, L. D. Y.; Huang, T.; Yu, A. S. Ruthenium oxide modified alpha-manganese dioxide nanotube as efficient bifunctional cathode catalysts for lithium oxygen batteries. ChemistrySelect 2019, 4, 7455–7462.

    Article  CAS  Google Scholar 

  118. Zhu, L. H.; Scheiba, F.; Trouillet, V.; Georgian, M.; Fu, Q.; Sarapulpva, A.; Sigel, F.; Hua, W. B.; Ehrenberg, H. MnO2 and reduced graphene oxide as bifunctional electrocatalysts for Li-O2 batteries. ACS Appl. Energy Mater. 2019, 2, 7121–7131.

    Article  CAS  Google Scholar 

  119. Feng, N. N.; Mu, X. W.; Zheng, M. B.; Wang, C. Q.; Lin, Z. X.; Zhang, X. P.; Shi, Y.; He, P.; Zhou, H. S. A multi-layered Fe2O3/graphene composite with mesopores as a catalyst for rechargeable aprotic lithium-oxygen batteries. Nanotechnology 2016, 27, 365402.

    Article  Google Scholar 

  120. Laguna-Bercero, M. A.; Kilner, J. A.; Skinner, S. J. Performance and characterization of (La, Sr) MnO3/YSZ and La0.6Sr0.2Co0.2Fe0.8O3 electrodes for solid oxide electrolysis cells. Chem. Mater. 2010, 22, 1134–1141.

    Article  CAS  Google Scholar 

  121. Zhang, K. J.; Zhang, L. X.; Chen, X.; He, X.; Wang, X. G.; Dong, S. M.; Gu, L.; Liu, Z. H.; Huang, C. S.; Cui, G. L. Molybdenum nitride/N-doped carbon nanospheres for lithium-O2 battery cathode electrocatalyst. ACS Appl. Mater. Interfaces 2013, 5, 3677–3682.

    Article  CAS  Google Scholar 

  122. Qiu, F. L.; He, P.; Jiang, J.; Zhang, X. P.; Tong, S. F.; Zhou, H. S. Ordered mesoporous TiC-C composites as cathode materials for Li-O2 batteries. Chem. Commun. 2016, 52, 2713–2716.

    Article  CAS  Google Scholar 

  123. Christy, M.; Arul, A.; Kim, Y. B. Carbide composite nanowire as bifunctional electrocatalyst for lithium oxygen batteries. Electrochim. Acta 2019, 300, 186–192.

    Article  CAS  Google Scholar 

  124. Thakur, P.; Puthirath, A. B.; Ajayan, P. M.; Narayanan, T. N. Iron carbide decorated carbon nanosphere-sheet hybrid based rechargeable high-capacity non-aqueous Li-O2 batteries. Carbon 2022, 196, 320–326.

    Article  CAS  Google Scholar 

  125. Li, R. J.; Hu, A. J.; Zhao, C.; Zhou, B.; He, M.; Fan, Y. N.; Chen, J. H.; Yan, Z. F.; Pan, Y.; Long, J. P. Tailoring mixed geometrical configurations in amorphous catalysts to activate oxygen electrode reactions of lithium-oxygen batteries. Chem. Eng. J. 2023, 452, 139162.

    Article  CAS  Google Scholar 

  126. Sturman, J. W.; Baranova, E. A.; Abu-Lebdeh, Y. Review: High-entropy materials for lithium-ion battery electrodes. Front. Energy Res. 2022, 10, 862551.

    Article  Google Scholar 

  127. McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshøj, J. S.; Nørskov, J. K.; Luntz, A. C. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2012, 3, 997–1001.

    Article  CAS  Google Scholar 

  128. Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.

    Article  Google Scholar 

  129. Yang, S. X.; He, P.; Zhou, H. S. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li-air/CO2 battery through tracing missing oxygen. Energy Environ. Sci. 2016, 9, 1650–1654.

    Article  CAS  Google Scholar 

  130. Lin, Y.; Martinez-Martinez, C.; Kim, J. W.; Connell, J. W. Shuttling induced starvation of redox mediators in high areal capacity rechargeable lithium-oxygen batteries. J. Electrochem. Soc. 2020, 167, 080522.

    Article  CAS  Google Scholar 

  131. Li, F. J.; Tang, D. M.; Chen, Y.; Golberg, D.; Kitaura, H.; Zhang, T.; Yamada, A.; Zhou, H. S. Ru/ITO: A carbon-free cathode for nonaqueous Li-O2 battery. Nano Lett. 2013, 13, 4702–4707.

    Article  Google Scholar 

  132. Li, F. J.; Tang, D. M.; Jian, Z. L.; Liu, D. Q.; Golberg, D.; Yamada, A.; Zhou, H. S. Li-O2 battery based on highly efficient Sb-doped tin oxide supported Ru nanoparticles. Adv. Mater. 2014, 26, 4659–4664.

    Article  CAS  Google Scholar 

  133. Li, F. J.; Tang, D. M.; Zhang, T.; Liao, K. M.; He, P.; Golberg, D.; Yamada, A.; Zhou, H. S. Superior performance of a Li-O2 battery with metallic RuO2 hollow spheres as the carbon-free cathode. Adv. Energy Mater. 2015, 5, 1500294.

    Article  Google Scholar 

  134. Liao, K. M.; Wang, X. B.; Sun, Y.; Tang, D. M.; Han, M.; He, P.; Jiang, X. F.; Zhang, T.; Zhou, H. S. An oxygen cathode with stable full discharge-charge capability based on 2D conducting oxide. Energy Environ. Sci. 2015, 8, 1992–1997.

    Article  CAS  Google Scholar 

  135. Liao, K. M.; Zhang, T.; Wang, Y. Q.; Li, F. J.; Jian, Z. L.; Yu, H. J.; Zhou, H. S. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries. ChemSusChem 2015, 8, 1429–1434.

    Article  CAS  Google Scholar 

  136. Tian, Y. W.; Zhang, Y. J.; Wu, L.; Dong, W. D.; Huang, R.; Dong, P. Y.; Yan, M.; Liu, J.; Mohamed, H. S. H.; Chen, L. H. et al. Bifunctional separator with ultra-lightweight MnO2 coating for highly stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2023, 15, 6877–6887.

    Article  CAS  Google Scholar 

  137. Liu, Z. Q.; Feng, N. N.; Shen, Z. H.; Li, F. J.; He, P.; Zhang, H. G.; Zhou, H. S. Carbon-free O2 cathode with three-dimensional ultralight nickel foam-supported Ruthenium electrocatalysts for Li-O2 batteries. ChemSusChem 2017, 10, 2714–2719.

    Article  CAS  Google Scholar 

  138. Kundu, D.; Black, R.; Adams, B.; Harrison, K.; Zavadil, K.; Nazar, L. F. Nanostructured metal carbides for aprotic Li-O2 batteries: New insights into interfacial reactions and cathode stability. J. Phys. Chem. Lett. 2015, 6, 2252–2258.

    Article  CAS  Google Scholar 

  139. Adams, B. D.; Black, R.; Radtke, C.; Williams, Z.; Mehdi, B. L.; Browning, N. D.; Nazar, L. F. The importance of nanometric passivating films on cathodes for Li-air batteries. ACS Nano 2014, 8, 12483–12493.

    Article  CAS  Google Scholar 

  140. Augustin, M.; Vullum, P. E.; Vullum-Bruer, F.; Svensson, A. M. Inside the electrode: Looking at cycling products in Li/O2 batteries. J. Power Sources 2019, 414, 130–140.

    Article  CAS  Google Scholar 

  141. Bardenhagen, I.; Yezerska, O.; Augustin, M.; Fenske, D.; Wittstock, A.; Bäumer, M. In situ investigation of pore clogging during discharge of a Li/O2 battery by electrochemical impedance spectroscopy. J. Power Sources 2015, 278, 255–264.

    Article  CAS  Google Scholar 

  142. Soavi, F.; Brilloni, A.; De Giorgio, F.; Poli, F. Semi-solid lithium/oxygen flow battery: An emerging, high-energy technology. Curr. Opin. Chem. Eng. 2022, 37, 100835.

    Article  Google Scholar 

  143. Nguyen, T. P.; Kim, I. T. Vanadium ferrocyanides as a highly Stable cathode for lithium-ion batteries. Molecules 2023, 28, 461.

    Article  CAS  Google Scholar 

  144. Zhang, Z. H.; Avdeev, M.; Chen, H. C.; Yin, W.; Kan, W. H.; He, G. Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries. Nat. Commun. 2022, 13, 7790.

    Article  CAS  Google Scholar 

  145. Johnson, L.; Li, C. M.; Liu, Z.; Chen, Y. H.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 2014, 6, 1091–1099.

    Article  CAS  Google Scholar 

  146. Aetukuri, N. B.; McCloskey, B. D.; García, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries. Nat. Chem. 2015, 7, 50–56.

    Article  CAS  Google Scholar 

  147. Müller, S.; Zhou, W. J.; Ramanayagam, A.; Roling, B. Electron and molecule transport across thin Li2O2 layers: How can dense layers be distinguished from porous layers. J. Phys. Chem. C 2019, 123, 6388–6394.

    Article  Google Scholar 

  148. Ma, S. B.; Lee, D. J.; Roev, V.; Im, D.; Doo, S. G. Effect of porosity on electrochemical properties of carbon materials as cathode for lithium-oxygen battery. J. Power Sources 2013, 244, 494–498.

    Article  CAS  Google Scholar 

  149. Lee, M.; Yoo, Y.; Kwak, J. H.; Yun, Y. S.; Jung, H. G.; Byun, D.; Oh, S. H.; Lim, H. D. Effect of surface characteristics of carbon host on electrochemical performance of nonaqueous Li-O2 batteries. Chem. Eng. J. 2021, 412, 128549.

    Article  CAS  Google Scholar 

  150. Bhunia, P.; Dutta, K. Oxygen reduction reaction in lithium-air batteries. In Oxygen Reduction Reaction. Sengupta, K.; Chatterjee, S.; Dutta, K., Eds.; Elsevier: Amsterdam, 2022; pp 467–492.

    Chapter  Google Scholar 

  151. Burke, C. M.; Pande, V.; Khetan, A.; Viswanathan, V.; Mccloskey, B. D. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity. Proc. Natl. Acad. Sci. USA 2015, 112, 9293–9298.

    Article  CAS  Google Scholar 

  152. Adams, B. D.; Radtke, C.; Black, R.; Trudeau, M. L.; Zaghib, K.; Nazar, L. F. Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge. Energy Environ. Sci. 2013, 6, 1772–1778.

    Article  CAS  Google Scholar 

  153. Hu, X. F.; Wang, J. B.; Li, Z. F.; Wang, J. Q.; Gregory, D. H.; Chen, J. MCNTs@MnO2 nanocomposite cathode integrated with soluble O2-carrier Co-salen in electrolyte for high-performance Li-air batteries. Nano Lett. 2017, 17, 2073–2078.

    Article  CAS  Google Scholar 

  154. Gu, X. L.; Wang, N.; Ma, S. Y.; Lian, Z.; Wang, L. D.; Li, J.; Lu, Y. C.; Liu, Q. C. Exploration on the influence mechanism of nitrogen doped CoO on oxygen reduction and evolution reaction in Li-O2 battery. Electrochim. Acta 2022, 421, 140482.

    Article  CAS  Google Scholar 

  155. Yi, X. P.; Liu, X. L.; Xiao, K. M.; Dou, R. F.; Wen, Z.; Zhou, W. N. Mechanistic evaluation of Li2O2 adsorption on carbon nanotube electrodes: A theoretical study. App. Surf. Sci. 2020, 506, 145050.

    Article  CAS  Google Scholar 

  156. Wu, Y. Z.; Zhao, B.; Zhao, X. W.; Han, L.; Shang, Y. Y.; Niu, Z. Q.; Liang, Y. L.; Zhang, X. B.; Jiang, Z. L.; Li, F. J. et al. Compressible, gradient-immersion, regenerable carbon nanotube sponges as high-performance lithium-oxygen battery cathodes. Mater. Today 2022, 59, 68–79.

    Article  CAS  Google Scholar 

  157. Mitchell, R. R.; Gallant, B. M.; Thompson, C. V.; Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ. Sci. 2011, 4, 2952–2958.

    Article  CAS  Google Scholar 

  158. Chen, Y.; Li, F. J.; Tang, D. M.; Jian, Z. L.; Liu, C.; Golberg, D.; Yamada, A.; Zhou, H. S. Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous Li-O2 batteries. J. Mater. Chem. A 2013, 1, 13076–13081.

    Article  CAS  Google Scholar 

  159. Mi, R.; Li, S. M.; Liu, X. C.; Liu, L. M.; Li, Y. C.; Mei, J.; Chen, Y. G.; Liu, H.; Wang, H.; Yan, H. et al. Electrochemical performance of binder-free carbon nanotubes with different nitrogen amounts grown on the nickel foam as cathodes in Li-O2 batteries. J. Mater. Chem. A 2014, 2, 18746–18753.

    Article  CAS  Google Scholar 

  160. Li, K.; Dong, H. Y.; Wang, Y. W.; Yin, Y. H.; Yang, S. T. Preparation of low-load Au-Pd alloy decorated carbon fibers binderfree cathode for Li-O2 battery. J. Colloid Interface Sci. 2020, 579, 448–454.

    Article  CAS  Google Scholar 

  161. Li, Y. L.; Wang, J. J.; Li, X. F.; Geng, D. S.; Li, R. Y.; Sun, X. L. Superior energy capacity of graphenenanosheets for a nonaqueous lithium-oxygen battery. Chem. Commun. 2011, 47, 9438–9440.

    Article  CAS  Google Scholar 

  162. Dong, H. L.; Ning, C.; Yang, G.; Ji, H. M.; Li, Y. Y. Single-side functionalized graphene as promising cathode catalysts in nonaqueous lithium-oxygen batteries. Nanoscale 2021, 13, 12727–12737.

    Article  CAS  Google Scholar 

  163. Zhao, C. T.; Yu, C.; Liu, S. H.; Yang, J.; Fan, X. M.; Huang, H. W.; Qiu, J. S. 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li-O2 batteries. Adv. Funct. Mater. 2015, 25, 6913–6920.

    Article  CAS  Google Scholar 

  164. Sun, B.; Huang, X. D.; Chen, S. Q.; Munroe, P.; Wang, G. X. Porous graphene nanoarchitectures: An efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries. Nano Lett. 2014, 14, 3145–3152.

    Article  CAS  Google Scholar 

  165. Li, J.; Zhang, H. M.; Zhang, Y. N.; Wang, M. R.; Zhang, F. X.; Nie, H. J. A hierarchical porous electrode using a micron-sized honeycomb-like carbon material for high capacity lithium-oxygen batteries. Nanoscale 2013, 5, 4647–4651.

    Article  CAS  Google Scholar 

  166. Shui, J. L.; Du, F.; Xue, C. M.; Li, Q.; Dai, L. M. Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries. ACS Nano 2014, 8, 3015–3022.

    Article  CAS  Google Scholar 

  167. Zabara, M. A.; Uzundal, C. B.; Ulgut, B. Linear and nonlinear electrochemical impedance spectroscopy studies of Li/SOCl2 batteries. J. Electrochem. Soc. 2019, 166, A811–A820.

    Article  CAS  Google Scholar 

  168. Carmier, D.; Vix-Guterl, C.; Lahaye, J. Porosity of the cathode during the discharge of SOCl2/Li batteries: Influence of the porous morphology of the carbons used. J. Power Sources 2002, 103, 237–244.

    Article  CAS  Google Scholar 

  169. Lee, S. B.; Pyun, S. I.; Lee, E. J. Effect of the compactness of the lithium chloride layer formed on the carbon cathode on the electrochemical reduction of SOCl2 electrolyte in Li-SOCl2 batteries. Electrochim. Acta 2001, 47, 855–864.

    Article  CAS  Google Scholar 

  170. Xu, Z. W.; Yan, H.; Yao, K.; Li, K.; Li, J. Y.; Jiang, K. R.; Li, Z. Enhanced stable and high voltage of Li/SOCl2 battery catalyzed by FePc particulates fixed on activated carbon substrates. J. Electrochem. Soc. 2021, 168, 100528.

    Article  CAS  Google Scholar 

  171. Gao, Y.; Li, S. W.; Wang, X.; Zhang, R. L.; Zhang, G.; Zheng, Y.; Zhao, J. S. Carbon nanotubes chemically modified by metal phthalocyanines with excellent electrocatalytic activity to Li/SOCl2 battery. J. Electrochem. Soc. 2017, 164, A1140–A1147.

    Article  CAS  Google Scholar 

  172. Gao, Y.; Chen, L. T.; Quan, M. K.; Zhang, G.; Zheng, Y.; Zhao, J. S. A series of new Phthalocyanine derivatives with large conjugated system as catalysts for the Li/SOCl2 battery. J. Electroanal. Chem. 2018, 808, 8–13.

    Article  CAS  Google Scholar 

  173. Abraham, K. M.; Alamgir, M.; Willstaedt, E. B.; Kilroy, W. P. Metal phthalocyanine-catalysed Li/SOCl2 cells. Electrochim. Acta 1992, 37, 531–543.

    Article  CAS  Google Scholar 

  174. Chen, L. T.; Yang, X. Y.; Wang, X. Q.; Hu, G. F.; Zhang, R. L.; Weng, N. S.; Zhao, J. S. High-efficiency electrocatalyst phthalocyanine in Li/SOCl2 batteries: From experimental to theoretical investigation. J. Electrochem. Soc. 2021, 168, 120505.

    Article  CAS  Google Scholar 

  175. Su, Y. Y.; Zhang, Y.; Zhang, R. L.; Yang, F.; Zhao, J. S. Synthesis and performance evaluation of binuclear metal phthalocyanines as high-efficiency electrocatalysts for Li/SOCl2 batteries. J. Mater. Res. 2018, 33, 2376–2384.

    Article  CAS  Google Scholar 

  176. Zabara, M. A.; Göçmez, H.; Karabatak, A.; Ulgut, B. Characterization of different electrolyte composition lithium thionyl chloride reserve battery by electrochemical impedance spectroscopy. J. Electrochem. Soc. 2021, 168, 050529.

    Article  CAS  Google Scholar 

  177. Kalu, E. E.; White, R. E. Thermal analysis of spirally wound Li/BCX and Li/SOCl2 cells. J. Electrochem. Soc. 1993, 140, 23–31.

    Article  CAS  Google Scholar 

  178. Krehl, P. W.; Liang, C. C. The technology of the Li/BrCl in SOCl2 inorganic battery system: Performance and self-discharge characteristics following long-term storage. J. Appl. Electrochem. 1983, 13, 451–458.

    Article  CAS  Google Scholar 

  179. Abraham, K. M.; Alamgir, M.; Perrotti, S. J. Some chemistry in the Li / “SOC22 + BrCl” cell. J. Electrochem. Soc. 1988, 135, 2686–2691.

    Article  CAS  Google Scholar 

  180. Ge, H. H.; Guo, Y. S.; Guo, R. F.; Wu, Y. P.; Zhou, G. D. EIS study of the influence of BrCl on the behavior of electrodes in Li/SOCl2 cells. J. Appl. Electrochem. 2009, 39, 155–158.

    Article  CAS  Google Scholar 

  181. Zabara, M. A.; Katirci, G.; Ülgut, B. Operando investigations of the interfacial electrochemical kinetics of metallic lithium anodes via temperature-dependent electrochemical impedance spectroscopy. J. Phys. Chem. C 2022, 126, 10968–10976.

    Article  CAS  Google Scholar 

  182. Zhang, Y.; Wang, T. L.; Zhang, R. L.; Yang, W. X.; Luo, K.; Zhang, W. P.; Zhao, J. S. Improving electrocatalytic activity of fluorinated multi-walled carbon nanotubes modified with tetraaminophthalocyanines for lithium/thionyl chloride battery. Ionics 2019, 25, 1459–1469.

    Article  CAS  Google Scholar 

  183. Wu, F. X.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 2017, 10, 435–459.

    Article  CAS  Google Scholar 

  184. Seo, J. K.; Cho, H. M.; Takahara, K.; Chapman, K. W.; Borkiewicz, O. J.; Sina, M.; Meng, Y. S. Revisiting the conversion reaction voltage and the reversibility of the CuF2 electrode in Li-ion batteries. Nano Res. 2017, 10, 4232–4244.

    Article  CAS  Google Scholar 

  185. Lapp, A. S.; Whang, G.; Bhandarkar, A.; Kolesnichenko, I. V.; Dunn, B. S.; Lambert, T. N.; Talin, A. A. In situ UV–Vis analysis of polysulfide shuttling in ionic liquid-based Li-FeS2 batteries. J. Phys. Chem. C 2022, 126, 5101–5111.

    Article  CAS  Google Scholar 

  186. Lu, J.; Chen, Z. H.; Ma, Z. F.; Pan, F.; Curtiss, L. A.; Amine, K. The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 2016, 11, 1031–1038.

    Article  CAS  Google Scholar 

  187. Wang, Y.; Fu, X. W.; Zheng, M.; Zhong, W. H.; Cao, G. Z. Strategies for building robust traffic networks in advanced energy storage devices: A focus on composite electrodes. Adv. Mater. 2019, 31, 1804204.

    Article  Google Scholar 

  188. Liu, J.; Wen, Y. R.; Wang, Y.; van Aken, P. A.; Maier, J.; Yu, Y. Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv. Mater. 2014, 26, 6025–6030.

    Article  CAS  Google Scholar 

  189. Xu, X. J.; Liu, J.; Liu, Z. B.; Shen, J. D.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Zhang, L.; Zhu, M. Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano 2017, 11, 9033–9040.

    Article  CAS  Google Scholar 

  190. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ inteacalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Article  CAS  Google Scholar 

  191. Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.

    Article  CAS  Google Scholar 

  192. Sanchez, J. S.; Xu, J.; Xia, Z. Y.; Sun, J. H.; Asp, L. E.; Palermo, V. Electrophoretic coating of LiFePO4/Graphene oxide on carbon fibers as cathode electrodes for structural lithium ion batteries. Compos. Sci. Technol. 2021, 208, 108768.

    Article  CAS  Google Scholar 

  193. Zhang, S. G.; Yin, G. Y.; Zhao, H. P.; Mi, J.; Sun, J.; Dang, L. Y. Facile synthesis of carbon nanofiber confined FeS2/Fe2O3 heterostructures as superior anode materials for sodium-ion batteries. J. Mater. Chem. C 2021, 9, 2933–2943.

    Article  CAS  Google Scholar 

  194. Chen, Y. Y.; Hu, X. D.; Evanko, B.; Sun, X. H.; Li, X.; Hou, T. Y.; Cai, S.; Zheng, C. M.; Hu, W. B.; Stucky, G. D. High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries. Nano Energy 2018, 46, 117–127.

    Article  CAS  Google Scholar 

  195. Liu, Z. M.; Lu, T. C.; Song, T.; Yu, X. Y.; Lou, X. W.; Paik, U. Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1576–1580.

    Article  Google Scholar 

  196. Kim, S. W.; Seo, D. H.; Gwon, H.; Kim, J.; Kang, K. Fabrication of FeF3 nanoflowers on CNT branches and their application to high power lithium rechargeable batteries. Adv. Mater. 2010, 22, 5260–5264.

    Article  CAS  Google Scholar 

  197. Chen, G. H.; Zhou, X. Z.; Bai, Y.; Yuan, Y. F.; Li, Y.; Chen, M. Z.; Ma, L.; Tan, G. Q.; Hu, J. P.; Wang, Z. H. et al. Enhanced lithium storage capability of FeF3·0.33H2O single crystal with active insertion site exposed. Nano Energy 2019, 56, 884–892.

    Article  CAS  Google Scholar 

  198. Wu, F. X.; Srot, V.; Chen, S. Q.; Loeger, S.; van Aken, P. A.; Maier, J.; Yu, Y. 3D honeycomb architecture enables a high-rate and long-life iron(III) fluoride-lithium battery. Adv. Mater. 2019, 31, 1905146.

    Article  CAS  Google Scholar 

  199. Zhang, C.; An, S. L.; Li, W. T.; Xu, H. Y.; Hao, W. J.; Liu, W.; Li, Z. L.; Qiu, X. P. Hierarchical mesoporous iron fluoride and reduced graphene oxide nanocomposite as cathode materials for highperformance sodium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 17538–17546.

    Article  CAS  Google Scholar 

  200. Duan, C.; Cheng, Z.; Li, W.; Li, F.; Liu, H.; Yang, J. G.; Hou, G. J.; He, P.; Zhou, H. S. Realizing the compatibility of a Li metal anode in an all-solid-state Li-S battery by chemical iodine-vapor deposition. Energy Environ. Sci. 2022, 15, 3236–3245.

    Article  CAS  Google Scholar 

  201. Zhao, C. T.; Sun, Q.; Luo, J.; Liang, J. N.; Liu, Y. L.; Zhang, L.; Wang, J. W.; Deng, S. X.; Lin, X. T.; Yang, X. F. et al. 3D porous garnet/gel polymer hybrid electrolyte for safe solid-state Li-O2 batteries with long lifetimes. Chem. Mater. 2020, 32, 10113–10119.

    Article  CAS  Google Scholar 

  202. Alaboina, P. K.; Rodrigues, S.; Rottmayer, M.; Cho, S. J. In situ dendrite suppression study of nanolayer encapsulated Li metal enabled by zirconia atomic layer deposition. ACS Appl. Mater. Interfaces 2018, 10, 32801–32808.

    Article  CAS  Google Scholar 

  203. Adair, K. R.; Zhao, C. T.; Banis, M. N.; Zhao, Y.; Li, R. Y.; Cai, M.; Sun, X. L. Highly stable lithium metal anode interface via molecular layer deposition zircone coatings for long life next-generation battery systems. Angew. Chem., Int. Ed. 2019, 58, 15797–15802.

    Article  CAS  Google Scholar 

  204. Hu, Z. L.; Zhang, S.; Dong, S. M.; Li, W. J.; Li, H.; Cui, G. L.; Chen, L. Q. Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes. Chem. Mater. 2017, 29, 4682–4689.

    Article  CAS  Google Scholar 

  205. Jing, H. K.; Kong, L. L.; Liu, S.; Li, G. R.; Gao, X. P. Protected lithium anode with porous Al2O3 layer for lithium-sulfur battery. J. Mater. Chem. A 2015, 3, 12213–12219.

    Article  CAS  Google Scholar 

  206. Ma, G. Q.; Wen, Z. Y.; Wang, Q. S.; Shen, C.; Jin, J.; Wu, X. W. Enhanced cycle performance of a Li-S battery based on a protected lithium anode. J. Mater. Chem. A 2014, 2, 19355–19359.

    Article  CAS  Google Scholar 

  207. Bai, M. H.; Xie, K. Y.; Yuan, K.; Zhang, K.; Li, N.; Shen, C.; Lai, Y. Q.; Vajtai, R.; Ajayan, P.; Wei, B. Q. A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers. Adv. Mater. 2018, 30, 1801213.

    Article  Google Scholar 

  208. Liu, S. F.; Xia, X. H.; Deng, S. J.; Xie, D.; Yao, Z. J.; Zhang, L. Y.; Zhang, S. Z.; Wang, X. L.; Tu, J. P. In situ solid electrolyte interphase from spray quenching on molten Li: A new way to construct high-performance lithium-metal anodes. Adv. Mater. 2019, 31, 1806470.

    Article  Google Scholar 

  209. Wang, D.; Xie, T.; Qin, C. C.; Wang, X. W.; Li, G. W.; Liu, Y. M.; Zou, H. Y.; Huang, L.; Wu, Y. P. Artificial SEI film via synchronous reaction-diffusion-assembly on Li liquid metal. Adv. Funct. Mater. 2022, 32, 2206405.

    Article  CAS  Google Scholar 

  210. Guo, X. Y.; Zhang, C. X.; Tian, Q. H.; Yu, D. W. Liquid metals dealloying as a general approach for the selective extraction of metals and the fabrication of nanoporous metals: A review. Mater. Today Commun. 2021, 26, 102007.

    Article  CAS  Google Scholar 

  211. Deng, J. X.; Wang, Y.; Qu, S. J.; Liu, Y. C.; Zou, W.; Zhou, F.; Zhou, A. J.; Li, J. Z. Fast Li+ transport of Li-Zn alloy protective layer enabling excellent electrochemical performance of Li metal anode. Batteries Supercaps 2021, 4, 140–145.

    Article  CAS  Google Scholar 

  212. Zhuang, H. F.; Zhao, P.; Li, G. D.; Xu, Y.; Jia, X. B. Li-LiAl alloy composite with memory effect as high-performance lithium metal anode. J. Power Sources 2020, 455, 227977.

    Article  CAS  Google Scholar 

  213. Shi, Z.; Liu, M. L.; Naik, D.; Gole, J. L. Electrochemical properties of Li-Mg alloy electrodes for lithium batteries. J. Power Sources 2001, 92, 70–80.

    Article  CAS  Google Scholar 

  214. Kong, L. L.; Wang, L.; Ni, Z. C.; Liu, S.; Li, G. R.; Gao, X. P. Lithium-magnesium alloy as a stable anode for lithium-sulfur battery. Adv. Funct. Mater. 2019, 29, 1808756.

    Article  Google Scholar 

  215. Wan, M. T.; Kang, S. J.; Wang, L.; Lee, H. W.; Zheng, G. W.; Cui, Y.; Sun, Y. M. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun. 2020, 11, 829.

    Article  CAS  Google Scholar 

  216. Dzakpasu, C. B.; Jin, D.; Kang, D.; Kim, N.; Jo, T.; Lee, H.; Ryou, S. Y.; Lee, Y. M. Bifunctional role of carbon nanofibrils within Li powder composite anode: More Li nucleation but less Li isolation. Electrochim. Acta 2022, 430, 141093.

    Article  CAS  Google Scholar 

  217. Park, K. Y.; Lim, J. M.; Luu, N. S.; Downing, J. R.; Wallace, S. G.; Chaney, L. E.; Yoo, H.; Hyun, W. J.; Kim, H. U.; Hersam, M. C. Concurrently approaching volumetric and specific capacity limits of lithium battery cathodes via conformal pickering emulsion graphene coatings. Adv. Energy Mater. 2020, 10, 2001216.

    Article  CAS  Google Scholar 

  218. Kim, W. S.; Yoon, W. Y. Observation of dendritic growth on Li powder anode using optical cell. Electrochim. Acta 2004, 50, 541–545.

    Article  CAS  Google Scholar 

  219. Heine, J.; Krüger, S.; Hartnig, C.; Wietelmann, U.; Winter, M.; Bieker, P. Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv. Energy Mater. 2014, 4, 1300815.

    Article  Google Scholar 

  220. Seong, I. W. and Yoon, W. Y. Electrochemical behavior of a silicon monoxide and Li-powder double layer anode cell. J. Power Sources 2010, 195, 6143–6147.

    Article  CAS  Google Scholar 

  221. Ai, G.; Wang, Z. H.; Zhao, H.; Mao, W. F.; Fu, Y. B.; Yi, R.; Gao, Y.; Battaglia, V.; Wang, D. H.; Lopatin, S. et al. Scalable process for application of stabilized lithium metal powder in Li-ion batteries. J. Power Sources 2016, 309, 33–41.

    Article  CAS  Google Scholar 

  222. Gao, X. W.; Zhou, Y. N.; Han, D. Z.; Zhou, J. Q.; Zhou, D. Z.; Tang, W.; Goodenough, J. B. Thermodynamic understanding of Li-dendrite formation. Joule 2020, 4, 1864–1879.

    Article  CAS  Google Scholar 

  223. Wu, Z. H.; Wang, C. Y.; Hui, Z. Y.; Liu, H. D.; Wang, S.; Yu, S. C.; Xing, X.; Holoubek, J.; Miao, Q. S.; Xin, H. L. et al. Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy, in press, DOI: https://doi.org/10.1038/s41560-023-01202-1.

  224. Nagy, K. S.; Kazemiabnavi, S.; Thornton, K.; Siegel, D. J. Thermodynamic overpotentials and nucleation rates for electrodeposition on metal anodes. ACS Appl. Mater. Interfaces 2019, 11, 7954–7964.

    Article  CAS  Google Scholar 

  225. Wang, D.; Zhang, W.; Zheng, W. T.; Cui, X. Q.; Rojo, T.; Zhang, Q. Towards high-safe lithium metal anodes: Suppressing lithium dendrites via tuning surface energy. Adv. Sci. 2017, 4, 1600168.

    Article  Google Scholar 

  226. Yan, H. H.; Bie, Y. H.; Cui, X. Y.; Xiong, G. P.; Chen, L. A computational investigation of thermal effect on lithium dendrite growth. Energy Convers. Manag. 2018, 161, 193–204.

    Article  CAS  Google Scholar 

  227. Wang, D.; Liu, Y. M.; Li, G. W.; Qin, C. C.; Huang, L.; Wu, Y. P. Liquid metal welding to suppress Li dendrite by equalized heat distribution. Adv. Funct. Mater. 2021, 31, 2106740.

    Article  CAS  Google Scholar 

  228. Li, L.; Basu, S.; Wang, Y. P.; Chen, Z. Z.; Hundekar, P.; Wang, B. W.; Shi, J.; Shi, Y. F.; Narayanan, S.; Koratkar, N. Self-heating-induced healing of lithium dendrites. Science 2018, 359, 1513–1516.

    Article  CAS  Google Scholar 

  229. Lin, Y. L.; Huang, S.; Zhong, L.; Wang, S. J.; Han, D. M.; Ren, S.; Xiao, M.; Meng, Y. Z. Organic liquid electrolytes in Li-S batteries: Actualities and perspectives. Energy Storage Mater. 2021, 34, 128–147.

    Article  Google Scholar 

  230. Markevich, E.; Salitra, G.; Rosenman, A.; Talyosef, Y.; Chesneau, F.; Aurbach, D. Fluoroethylene carbonate as an important component in organic carbonate electrolyte solutions for lithium sulfur batteries. Electrochem. Commun. 2015, 60, 42–46.

    Article  CAS  Google Scholar 

  231. Tan, J.; Ye, M. X.; Shen, J. F. Deciphering the role of LiNO3 additives in Li-S batteries. Mater. Horiz. 2022, 9, 2325–2334.

    Article  CAS  Google Scholar 

  232. Sun, J. P.; Zhang, K.; Fu, Y. Z.; Guo, W. Benzoselenol as an organic electrolyte additive in Li-S battery. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-022-4361-z.

  233. Peng, Y. Y.; Badam, R.; Jayakumar, T. P.; Wannapakdee, W.; Changtong, C.; Matsumi, N. Drastic effect of salt concentration in ionic liquid on performance of lithium sulfur battery. J. Electrochem. Soc. 2022, 169, 050515.

    Article  CAS  Google Scholar 

  234. Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.

    Article  CAS  Google Scholar 

  235. Hakari, T.; Fujita, Y.; Deguchi, M.; Kawasaki, Y.; Otoyama, M.; Yoneda, Y.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. Solid electrolyte with oxidation tolerance provides a high-capacity Li2S-based positive electrode for all-solid-state Li/S batteries. Adv. Funct. Mater. 2022, 32, 2106174.

    Article  CAS  Google Scholar 

  236. Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.

    Article  Google Scholar 

  237. Li, S. L.; Zhang, W. F.; Lv, M. Y.; Song, H. Y.; Du, L. Inhibition of polysulfide shuttles in Li-S batteries: Modified separators and solid-state electrolytes. Adv. Energy Mater. 2021, 11, 2000779.

    Article  CAS  Google Scholar 

  238. Zhang, S. G.; Ueno, K.; Dokko, K.; Watanabe, M. Recent Advances in electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1500117.

    Article  Google Scholar 

  239. Qian, J.; Jin, B. Y.; Li, Y. Y.; Zhan, X. L.; Hou, Y.; Zhang, Q. H. Research progress on gel polymer electrolytes for lithium-sulfur batteries. J. Energy Chem. 2021, 56, 420–437.

    Article  CAS  Google Scholar 

  240. Li, W. Y.; Pang, Y.; Zhu, T. C.; Wang, Y. G.; Xia, Y. Y. A gel polymer electrolyte based lithium-sulfur battery with low self-discharge. Solid State Ion. 2018, 318, 82–87.

    Article  CAS  Google Scholar 

  241. Chen, K.; Du, J. Y.; Wang, J.; Yang, D. Y.; Chu, J. W.; Chen, H.; Zhang, H. R.; Huang, G.; Zhang, X. B. Realizing stable carbonate electrolytes in Li-O2/CO2 batteries. Chin. J. Chem. 2023, 41, 314–321.

    Article  CAS  Google Scholar 

  242. Liu, X.; Song, X. S.; Zhang, Q.; Zhu, X. B.; Han, Q.; Liu, Z. W.; Zhang, P.; Zhao, Y. Decomposition pathway and stabilization of ether-based electrolytes in the discharge process of Li-O2 battery. J. Energy Chem. 2022, 69, 516–523.

    Article  CAS  Google Scholar 

  243. Wang, Y.; Lu, Y. C. Nonaqueous lithium-oxygen batteries: Reaction mechanism and critical open questions. Energy Storage Mater. 2020, 28, 235–246.

    Article  Google Scholar 

  244. Zhang, P.; Ding, M. J.; Li, X. X.; Li, C. X.; Li, Z. Q.; Yin, L. W. Challenges and strategy on parasitic reaction for high-performance nonaqueous lithium-oxygen batteries. Adv. Energy Mater. 2020, 10, 2001789.

    Article  CAS  Google Scholar 

  245. Wylie, R. A. L.; Miller, B.; Connal, L. A.; Qiao, G. Oligomeric poly(oxazoline) as potential lithium battery electrolytes. J. Electrochem. Soc. 2022, 169, 060533.

    Article  CAS  Google Scholar 

  246. Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. An improved high-performance lithium-air battery. Nat. Chem. 2012, 4, 579–585.

    Article  CAS  Google Scholar 

  247. Wu, S. C.; Yi, J.; Zhu, K.; Bai, S. Y.; Liu, Y.; Ishida, M.; Zhou, H. S. A super-hydrophobic quasi-solid electrolyte for Li-O2 battery with improved safety and cycle life in humid atmosphere. Adv. Energy Mater. 2017, 7, 1601759.

    Article  Google Scholar 

  248. Amici, J.; Torchio, C.; Versaci, D.; Dessantis, D.; Marchisio, A.; Caldera, F.; Bella, F.; Francia, C. Bodoardo, S. Nanosponge-based composite gel polymer electrolyte for safer Li-O2 batteries. Polymers 2021, 13, 1625.

    Article  CAS  Google Scholar 

  249. Yersak, T. A.; Macpherson, H. A.; Kim, S. C.; Le, V. D.; Kang, C. S.; Son, S. B.; Kim, Y. H.; Trevey, J. E.; Oh, K. H.; Stoldt, C. et al. Solid state enabled reversible four electron storage. Adv. Energy Mater. 2013, 3, 120–127.

    Article  CAS  Google Scholar 

  250. Whiteley, J. M.; Hafner, S.; Han, S. S.; Kim, S. C.; Oh, K. H.; Lee, S. H. FeS2-imbedded mixed conducting matrix as a solid battery cathode. Adv. Energy Mater. 2016, 6, 1600495.

    Article  Google Scholar 

  251. Strauss, E.; Golodnitsky, D.; Peled, E. Study of phase changes during 500 full cycles of Li/composite polymer electrolyte/FeS2 battery. Electrochim. Acta 2000, 45, 1519–1525.

    Article  CAS  Google Scholar 

  252. Yang, X. F.; Jiang, M.; Gao, X. J.; Bao, D. N.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C. T. et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: Main chain or terminal-OH group. Energy Environ. Sci. 2020, 13, 1318–1325.

    Article  CAS  Google Scholar 

  253. Huang, Q.; Turcheniuk, K.; Ren, X. L.; Magasinski, A.; Gordon, D.; Bensalah, N.; Yushin, G. Insights into the effects of electrolyte composition on the performance and stability of FeF2 conversion-type cathodes. Adv. Energy Mater. 2019, 9, 1803323.

    Article  Google Scholar 

  254. Zhao, E. B.; Borodin, O.; Gao, X. S.; Lei, D. N.; Xiao, Y. R.; Ren, X. L.; Fu, W. B.; Magasinski, A.; Turcheniuk, K.; Yushin, G. Lithium-iron(III) fluoride battery with double surface protection. Adv. Energy Mater. 2018, 8, 1800721.

    Article  Google Scholar 

  255. Gu, W. T.; Borodin, O.; Zdyrko, B.; Lin, H. T.; Kim, H.; Nitta, N.; Huang, J. X.; Magasinski, A.; Milicev, Z.; Berdichevsky, G. et al. Lithium-iron fluoride battery with in situ surface protection. Adv. Funct. Mater. 2016, 26, 1507–1516.

    Article  CAS  Google Scholar 

  256. Fu, W. B.; Zhao, E. B.; Sun, Z. F.; Ren, X. L.; Magasinski, A.; Yushin, G. Iron fluoride-carbon nanocomposite nanofibers as freestanding cathodes for high-energy lithium batteries. Adv. Funct. Mater. 2018, 28, 1801711.

    Article  Google Scholar 

  257. Shin, H.; Baek, M.; Gupta, A.; Char, K.; Manthiram, A.; Choi, J. W. Recent progress in high donor electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2001456.

    Article  CAS  Google Scholar 

  258. Wang, W.; Zhang, J. L.; Yang, Q.; Wang, S. W.; Wang, W. H.; Li, B. H. Stable cycling of high-voltage lithium-metal batteries enabled by high-concentration FEC-based electrolyte. ACS Appl. Mater. Interfaces 2020, 12, 22901–22909.

    Article  CAS  Google Scholar 

  259. Guo, J.; Wen, Z. Y.; Wu, M. F.; Jin, J.; Liu, Y. Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem. Commun. 2015, 51, 59–63.

    Article  CAS  Google Scholar 

  260. Qu, C.; Chen, Y. Q.; Yang, X. F.; Zhang, H. Z.; Li, X. F.; Zhang, H. M. LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp, of polysulfide and low dendrite of lithium. Nano Energy 2017, 39, 262–272.

    Article  CAS  Google Scholar 

  261. Liang, X.; Wen, Z. Y.; Liu, Y.; Wu, M. F.; Jin, J.; Zhang, H.; Wu, X. W. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sources 2011, 196, 9839–9843.

    Article  CAS  Google Scholar 

  262. Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 2016, 1, 16094.

    Article  CAS  Google Scholar 

  263. Wu, T. L.; Yang, T.; Zhang, J. Z.; Zheng, X. W.; Liu, K. L.; Wang, C. Y.; Chen, M. M. CoB and BN composites enabling integrated adsorption/catalysis to polysulfides for inhibiting shuttle-effect in Li-S batteries. J. Energy Chem. 2021, 59, 220–228.

    Article  CAS  Google Scholar 

  264. Xu, J.; Lin, Z.; Lei, Y.; Huang, X. R.; Chen, C. A water-stable, light-weight, MOF-based membrane for mitigating polysulfide shuttling in Li-S batteries. Dalton Trans. 2022, 51, 17942–17946.

    Article  CAS  Google Scholar 

  265. Ma, F.; Yu, B.; Zhang, X. J.; Zhang, Z. H.; Srinivas, K.; Wang, X. Q.; Liu, D. W.; Wang, B.; Zhang, W. L.; Wu, Q. et al. WN0.67-embedded N-doped graphene-nanosheet interlayer as efficient polysulfide catalyst and absorbant for high-performance lithium-sulfur batteries. Chem. Eng. J. 2022, 431, 133439.

    Article  CAS  Google Scholar 

  266. Hu, M. F.; Ma, Q. Y.; Yuan, Y.; Pan, Y. K.; Chen, M. Q.; Zhang, Y. Y.; Long, D. H. Grafting polyethyleneimine on electrospun nanofiber separator to stabilize lithium metal anode for lithium sulfur batteries. Chem. Eng. J. 2020, 388, 124258.

    Article  CAS  Google Scholar 

  267. Zhou, C. Y.; Wang, J.; Zhu, X. B.; Chen, K.; Ouyang, Y.; Wu, Y.; Miao, Y. E.; Liu, T. X. A dual-functional poly(vinyl alcohol)/poly(lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li-S batteries. Nano Res. 2021, 14, 1541–1550.

    Article  CAS  Google Scholar 

  268. Tian, R.; Wan, S. L.; Guan, L.; Duan, H. N.; Guo, Y. P.; Li, H.; Liu, H. Z. Oriented growth of Li metal for stable Li/carbon composite negative electrode. Electrochim. Acta 2018, 292, 227–233.

    Article  CAS  Google Scholar 

  269. Li, C. F.; Liu, S. H.; Shi, C. G.; Liang, G. H.; Lu, Z. T.; Fu, R. W.; Wu, D. C. Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nat. Commun. 2019, 10, 1363.

    Article  Google Scholar 

  270. Talian, S. D.; Kapun, G.; Moškon, J.; Dominko, R.; Gaberšček, M. Transmission line model impedance analysis of lithium sulfur batteries: Influence of lithium sulfide deposit formed during discharge and self-discharge. J. Electrochem. Soc. 2022, 169, 010529.

    Article  CAS  Google Scholar 

  271. Wang, J. N.; Liu, J. W.; Ma, Q. Y.; Chen, X.; Sun, S. Y.; Xu, H.; Zhu, L.; Wang, Z.; Feng, J. T.; Yan, W. Elastic three-dimensional Fe-doped polypyrrole aerogel current collector for high-loading and high-energy-density lithium-sulfur batteries. J. Alloys Compd. 2022, 899, 163298.

    Article  CAS  Google Scholar 

  272. Jin, S.; Xin, S.; Wang, L. J.; Du, Z. Z.; Cao, L. N.; Chen, J. F.; Kong, X. H.; Gong, M.; Lu, J. L.; Zhu, Y. W. et al. Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-S batteries. Adv. Mater. 2016, 28, 9094–9102.

    Article  CAS  Google Scholar 

  273. Wang, L.; Liu, S. K.; Hu, J.; Zhang, X. A.; Li, X.; Zhang, G. H.; Li, Y. J.; Zheng, C. M.; Hong, X. B.; Duan, H. G. Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells. Nano Res. 2021, 14, 1355–1363.

    Article  CAS  Google Scholar 

  274. Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 2016, 28, 2155–2162.

    Article  CAS  Google Scholar 

  275. Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

    Article  CAS  Google Scholar 

  276. Yang, C. P.; Yao, Y. G.; He, S. M.; Xie, H.; Hitz, E.; Hu, L. B. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 2017, 29, 1702714.

    Article  Google Scholar 

  277. Zhang, Y. J.; Xia, X. H.; Wang, D. H.; Wang, X. L.; Gu, C. D.; Tu, J. P. Integrated reduced graphene oxide multilayer/Li composite anode for rechargeable lithium metal batteries. RSC Adv. 2016, 6, 11657–11664.

    Article  CAS  Google Scholar 

  278. Shi, P.; Li, T.; Zhang, R.; Shen, X.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Chen, X. R.; Liu, H.; Zhang, Q. Lithiophilic LiC6 Layers on carbon hosts enabling stable Li metal anode in working batteries. Adv. Mater. 2019, 31, 1807131.

    Article  Google Scholar 

  279. Zou, P. C.; Wang, Y.; Chiang, S. W.; Wang, X. Y.; Kang, F. Y.; Yang, C. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nat. Commun. 2018, 9, 464.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52025013, 52071184, 52171228, 21705103, and 52202266), the Natural Science Foundation of Tianjin (No. 22JCZDJC00170), the 111 Project (No. B12015), and the Fundamental Research Funds for the Central Universities, the Applied Basic Research Project of Shanxi Province (Nos. 202103021224251 and 202103021223259).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaifang Shang or Lifang Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Li, Z., Shang, H. et al. Conversion reaction lithium metal batteries. Nano Res. 16, 8219–8252 (2023). https://doi.org/10.1007/s12274-023-5673-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5673-3

Keywords

Navigation