Skip to main content
Log in

Selective and stable Au-Cu bimetallic catalyst for CO-PROX

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Gold-based catalysts are promising in CO preferential oxidation (CO-PROX) reaction in H2-rich stream on account of their high intrinsic activity for CO elimination even at ambient temperature. However, the decrease of CO conversion at elevated temperature due to the competition of H2 oxidation, together with the low stability of gold nanoparticles, has posed a dear challenge. Herein, we report that Au-Cu bimetallic catalyst prepared by galvanic replacement method shows a wide temperature window for CO total conversion (30–100 °C) and very good catalyst stability without deactivation in a 200-h test. Detailed characterizations combined with density functional theory (DFT) calculation reveal that the synergistic effect of Au-Cu, the electron transfer from Au to Cu, leads to not only strengthened chemisorption of CO but also weakened dissociation of H2, both of which are helpful in inhibiting the competition of H2 oxidation thus widening the temperature window for CO total conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrog. Energy 2008, 33, 4013–4029.

    CAS  Google Scholar 

  2. Peschel, A. Industrial perspective on hydrogen purification, compression, storage, and distribution. Fuel Cells 2020, 20, 385–393.

    CAS  Google Scholar 

  3. Davó-Quiñonero, A.; Navlani-García, M.; Lozano-Castelló, D.; Bueno-López, A.; Anderson, J. A. Role of hydroxyl groups in the preferential oxidation of CO over copper oxide-cerium oxide catalysts. ACS Catal. 2016, 6, 1723–1731.

    Google Scholar 

  4. Qiao, B. T.; Liu, J. X.; Wang, Y. G.; Lin, Q. Q.; Liu, X. Y.; Wang, A. Q.; Li, J.; Zhang, T.; Liu, J. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 2015, 5, 6249–6254.

    CAS  Google Scholar 

  5. Hong, F.; Wang, S. Y.; Zhang, J. Y.; Zhang, B. S.; Sun, K. J.; Huang, J. H.; Qiao, B. T.; Ta, N.; Li, M. R.; Li, D. et al. Blocking the non-selective sites through surface plasmon-induced deposition of metal oxide on Au/TiO2 for CO-PROX reaction. Chem Catal. 2021, 1, 456–466.

    CAS  Google Scholar 

  6. Miao, Y. X.; Wang, J.; Li, W. C. Enhanced catalytic activities and selectivities in preferential oxidation of CO over ceria-promoted Au/Al2O3 catalysts. Chin. J. Catal. 2016, 37, 1721–1728.

    CAS  Google Scholar 

  7. Lin, Q. Q.; Qiao, B. T.; Huang, Y. Q.; Li, L.; Lin, J.; Liu, X. Y.; Wang, A. Q.; Li, W. C.; Zhang, T. La-doped Al2O3 supported Au nanoparticles: Highly active and selective catalysts for PROX under PEMFC operation conditions. Chem. Commun. 2014, 50, 2721–2724.

    CAS  Google Scholar 

  8. Ni, J.; Wang, R.; Lin, J. X.; Wei, K. M. Ruthenium ammonium chloride as a precursor for the preparation of high activity catalysts for ammonia synthesis. Chin. J. Catal. 2009, 30, 185–190.

    CAS  Google Scholar 

  9. Hong, F.; Wang, S. Y.; Zhang, J. Y.; Fu, J. H.; Jiang, Q. K.; Sun, K. J.; Huang, J. H. Strong metal-support interaction boosting the catalytic activity of Au/TiO2 in chemoselective hydrogenation. Chin. J. Catal. 2021, 42, 1530–1537.

    CAS  Google Scholar 

  10. Hu, Z. W.; Zhang, L. J. Catalytic activity of bimetallic Rh/Rh-M nanosheets governed by CO spillover. Chem Catal. 2022, 2, 1512–1514.

    CAS  Google Scholar 

  11. Liu, K. L.; Qin, R. X.; Li, K. J.; Zhang, W. J.; Ruan, P. P.; Fu, G.; Zheng, N. F. Atomically dispersed palladium catalyzes H/D exchange and isomerization of alkenes via reversible insertion and elimination. Chem Catal. 2021, 1, 1480–1492.

    CAS  Google Scholar 

  12. Hornés, A.; Hungría, A. B.; Bera, P.; Cámara, A. L.; Fernández-García, M.; Martínez-Arias, A.; Barrio, L.; Estrella, M.; Zhou, G.; Fonseca, J. J. et al. Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream. J. Am. Chem. Soc. 2010, 132, 34–35.

    Google Scholar 

  13. Lin, J.; Qiao, B. T.; Liu, J. Y.; Huang, Y. Q.; Wang, A. Q.; Li, L.; Zhang, W. S.; Allard, L. F.; Wang, X. D.; Zhang, T. Design of a highly active Ir/Fe(OH)x catalyst: Versatile application of Pt-group metals for the preferential oxidation of carbon monoxide. Angew. Chem., Int. Ed. 2012, 51, 2920–2924.

    CAS  Google Scholar 

  14. Alencar, C. S. L.; Paiva, A. R. N.; Da Silva, J. C. M.; Vaz, J. M.; Spinacé, E. V. One-step synthesis of AuCu/TiO2 catalysts for CO preferential oxidation. Mater. Res. 2020, 23, e20200181.

    CAS  Google Scholar 

  15. Eckert, R.; Felderhoff, M.; Schüth, F. Preferential carbon monoxide oxidation over copper-based catalysts under in situ ball milling. Angew. Chem., Int. Ed. 2017, 56, 2445–2448.

    CAS  Google Scholar 

  16. Zhang, R.; Miller, J. T.; Baertsch, C. D. Identifying the active redox oxygen sites in a mixed Cu and Ce oxide catalyst by in situ X-ray absorption spectroscopy and anaerobic reactions with CO in concentrated H2. J. Catal. 2012, 294, 69–78.

    CAS  Google Scholar 

  17. Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635.

    CAS  Google Scholar 

  18. Lin, J.; Huang, Y. Q.; Li, L.; Qiao, B. T.; Wang, X. D.; Wang, A. Q.; Zhang, T. Exerting the structural advantages of Ir-in-CeO2 and Ir-on-CeO2 to widen the operating temperature window for preferential CO oxidation. Chem. Eng. J. 2011, 168, 822–826.

    CAS  Google Scholar 

  19. Hernández, J. A.; Gómez, S. A.; Zepeda, T. A.; Fierro-González, J. C.; Fuentes, G. A. Insight into the deactivation of Au/CeO2 catalysts studied by in situ spectroscopy during the CO-PROX reaction. ACS Catal. 2015, 5, 4003–4012.

    Google Scholar 

  20. Nilekar, A. U.; Alayoglu, S.; Eichhorn, B.; Mavrikakis, M. Preferential CO oxidation in hydrogen: Reactivity of core-shell nanoparticles. J. Am. Chem. Soc. 2010, 132, 7418–7428.

    CAS  Google Scholar 

  21. Liu, K.; Wang, A. Q.; Zhang, T. Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts. ACS Catal. 2012, 2, 1165–1178.

    CAS  Google Scholar 

  22. Jia, Z. M.; Qin, X. T.; Chen, Y. L.; Cai, X. B.; Gao, Z. R.; Peng, M.; Huang, F.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification. Nat. Commun. 2022, 13, 6798.

    CAS  Google Scholar 

  23. Jia, Z. M.; Peng, M.; Cai, X. B.; Chen, Y. L.; Chen, X. W.; Huang, F.; Zhao, L. M.; Diao, J. Y.; Wang, N.; Xiao, D. Q. et al. Fully exposed platinum clusters on a nanodiamond/graphene hybrid for efficient low-temperature CO oxidation. ACS Catal. 2022, 12, 9602–9610.

    CAS  Google Scholar 

  24. Elmhamdi, A.; Pascual, L.; Nahdi, K.; Martinez-Arias, A. Structure/redox/activity relationships in CeO2/CuMn2O4 CO-PROX catalysts. Appl. Catal. B Environ. 2017, 217, 1–11.

    CAS  Google Scholar 

  25. Dreyer, J. A. H.; Grossmann, H. K.; Chen, J. F.; Grieb, T.; Gong, B. B.; Sit, P. H. L.; Mädler, L.; Teoh, W. Y. Preferential oxidation of carbon monoxide over Pt-FeOx/CeO2 synthesized by two-nozzle flame spray pyrolysis. J. Catal. 2015, 329, 248–261.

    CAS  Google Scholar 

  26. Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014, 346, 1498–1501.

    CAS  Google Scholar 

  27. Saavedra, J.; Doan, H. A.; Pursell, C. J.; Grabow, L. C.; Chandler, B. D. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 2014, 345, 1599–1602.

    CAS  Google Scholar 

  28. Quinet, E.; Piccolo, L.; Morfin, F.; Avenier, P.; Diehl, F.; Caps, V.; Rousset, J. L. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation. J. Catal. 2009, 268, 384–389.

    CAS  Google Scholar 

  29. Sangeetha, P.; Zhao, B.; Chen, Y. W. Au/CuOx-TiO2 catalysts for preferential oxidation of CO in hydrogen stream. Ind. Eng. Chem. Res. 2010, 49, 2096–2102.

    CAS  Google Scholar 

  30. Naknam, P.; Luengnaruemitchai, A.; Wongkasemjit, S. Au/ZnO and Au/ZnO-Fe2O3 prepared by deposition-precipitation and their activity in the preferential oxidation of CO. Energy Fuel 2009, 23, 5084–5091.

    CAS  Google Scholar 

  31. Divins, N. J.; López, E.; Angurell, I.; Neuberg, S.; Zapf, R.; Kolb, G.; Llorca, J. CO total and preferential oxidation over stable Au/TiO2 catalysts derived from preformed Au nanoparticles. Catalysts 2020, 10, 1028.

    CAS  Google Scholar 

  32. Konova, P.; Naydenov, A.; Tabakova, T.; Mehandjiev, D. Deactivation of nanosize gold supported on zirconia in CO oxidation. Catal. Commun. 2004, 5, 537–542.

    CAS  Google Scholar 

  33. Hao, Y.; Mihaylov, M.; Ivanova, E.; Hadjiivanov, K.; Knözinger, H.; Gates, B. C. CO oxidation catalyzed by gold supported on MgO: Spectroscopic identification of carbonate-like species bonded to gold during catalyst deactivation. J. Catal. 2009, 261, 137–149.

    CAS  Google Scholar 

  34. Ntho, T. A.; Anderson, J. A.; Scurrell, M. S. CO oxidation over titanate nanotube supported Au: Deactivation due to bicarbonate. J. Catal. 2009, 261, 94–100.

    CAS  Google Scholar 

  35. Xu, H.; Ni, K.; Li, X. K.; Zhu, S.; Fan, G. H. Comparative studies of leached Pt-Fe and Pt-Co catalysts for CO oxidation reactions. Chin. J. Catal. 2017, 38, 1261–1269.

    CAS  Google Scholar 

  36. Wang, G.; Du, W.; Duan, X. Z.; Cao, Y. Q.; Zhang, Z. H.; Xu, J. L.; Chen, W. Y.; Qian, G.; Yuan, W. K.; Zhou, X. G. et al. Mechanism-guided elaboration of ternary Au-Ti-Si sites to boost propylene oxide formation. Chem Catal. 2021, 1, 885–895.

    CAS  Google Scholar 

  37. Sun, Y. R.; Han, G. K.; Du, L.; Du, C. Y.; Zhou, X.; Sun, Q.; Gao, Y. Z.; Yin, G. P.; Li, Y.; Yang, T. Photoelectrochemistry-driven selective hydroxyl oxidation of polyols: Synergy between Au nanoparticles and C3N4 nanosheets. Chem Catal. 2021, 1, 1260–1272.

    CAS  Google Scholar 

  38. Aly, M.; Saeys, M. Selective silylation boosts propylene epoxidation with H2 and O2 over Au/TS-1. Chem Catal. 2021, 1, 761–762.

    CAS  Google Scholar 

  39. Suzuki, K.; Yamaguchi, T.; Matsushita, K.; Iitsuka, C.; Miura, J.; Akaogi, T.; Ishida, H. Aerobic oxidative esterification of aldehydes with alcohols by gold-nickel oxide nanoparticle catalysts with a core-shell structure. ACS Catal. 2013, 3, 1845–1849.

    CAS  Google Scholar 

  40. Zhu, B. E.; Thrimurthulu, G.; Delannoy, L.; Louis, C.; Mottet, C.; Creuze, J.; Legrand, B.; Guesmi, H. Evidence of Pd segregation and stabilization at edges of AuPd nano-clusters in the presence of CO: A combined DFT and DRIFTS study. J. Catal. 2013, 308, 272–281.

    CAS  Google Scholar 

  41. Liu, Y.; Jia, C. J.; Yamasaki, J.; Terasaki, O.; Schüth, F. Highly active iron oxide supported gold catalysts for CO oxidation: How small must the gold nanoparticles be. Angew. Chem., Int. Ed. 2010, 49, 5771–5775.

    CAS  Google Scholar 

  42. Au, L.; Lu, X. M.; Xia, Y. N. A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl2 or AuCl4. Adv. Mater. 2008, 20, 2517–2522.

    CAS  Google Scholar 

  43. Tan, S. F.; Lin, G. H.; Bosman, M.; Mirsaidov, U.; Nijhuis, C. A. Real-time dynamics of galvanic replacement reactions of silver nanocubes and Au studied by liquid-cell transmission electron microscopy. ACS Nano 2016, 10, 7689–7695.

    CAS  Google Scholar 

  44. Wu, T. P.; Childers, D. J.; Gomez, C.; Karim, A. M.; Schweitzer, N. M.; Kropf, A. J.; Wang, H.; Bolin, T. B.; Hu, Y. F.; Kovarik, L. et al. General method for determination of the surface composition in bimetallic nanoparticle catalysts from the L Edge X-ray absorption near-edge spectra. ACS Catal. 2012, 2, 2433–2443.

    CAS  Google Scholar 

  45. Sá, J.; Vinek, H. Catalytic hydrogenation of nitrates in water over a bimetallic catalyst. Appl. Catal. B Environ. 2005, 57, 247–256.

    Google Scholar 

  46. Liu, X. Y.; Wang, A. Q.; Li, L.; Zhang, T.; Mou, C. Y.; Lee, J. F. Structural changes of Au-Cu bimetallic catalysts in CO oxidation: In situ XRD, EPR, XANES, and FT-IR characterizations. J. Catal. 2011, 278, 288–296.

    CAS  Google Scholar 

  47. Arango-Díaz, A.; Moretti, E.; Talon, A.; Storaro, L.; Lenarda, M.; Núez, P.; Marrero-Jerez, J.; Jiménez-Jiménez, J.; Jiménez-López, A.; Rodríguez-Castellón, E. Preferential CO oxidation (CO-PROX) catalyzed by CuO supported on nanocrystalline CeO2 prepared by a freeze-drying method. Appl. Catal. A Gen. 2014, 477, 54–63.

    Google Scholar 

  48. Gu, D.; Tseng, J. C.; Weidenthaler, C.; Bongard, H. J.; Spliethoff, B.; Schmidt, W.; Soulimani, F.; Weckhuysen, B. M.; Schüth, F. Gold on different manganese oxides: Ultra-low-temperature CO oxidation over colloidal gold supported on bulk-MnO2 nanomaterials. J. Am. Chem. Soc. 2016, 138, 9572–9580.

    CAS  Google Scholar 

  49. Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T. Jr. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736–739.

    CAS  Google Scholar 

  50. Li, S. Preparation and characterization of bimetal MOF-74-Co/Cu and its toluene adsorption performances. J. Porous Mater., in press, https://doi.org/10.1007/s10934-022-01353-8.

  51. Collinge, G.; Xiang, Y. Z.; Barbosa, R.; McEwen, J. S.; Kruse, N. CO-induced inversion of the layer sequence of a model CoCu catalyst. Surf. Sci. 2016, 648, 74–83.

    CAS  Google Scholar 

  52. Sandoval, A.; Delannoy, L.; Méthivier, C.; Louis, C.; Zanella, R. Synergetic effect in bimetallic Au-Ag/TiO2 catalysts for CO oxidation: New insights from in situ characterization. Appl. Catal. A Gen. 2015, 504, 287–294.

    CAS  Google Scholar 

  53. Brown, M. A.; Ringleb, F.; Fujimori, Y.; Sterrer, M.; Freund, H. J.; Preda, G.; Pacchioni, G. Initial formation of positively charged gold on MgO(001) thin films: Identification by experiment and structural assignment by theory. J. Phys. Chem. C 2011, 115, 10114–10124.

    CAS  Google Scholar 

  54. Prestianni, A.; Martorana, A.; Labat, F.; Ciofini, I.; Adamo, C. Theoretical insights on O2 and CO adsorption on neutral and positively charged gold clusters. J. Phys. Chem. B 2006, 110, 12240–12248.

    CAS  Google Scholar 

  55. Kuhn, M.; Sham, T. K. Charge redistribution and electronic behavior in a series of Au-Cu alloys. Phys. Rev. B 1994, 49, 1647–1661.

    CAS  Google Scholar 

  56. Wang, G. W.; Xiao, L.; Huang, B.; Ren, Z. D.; Tang, X.; Zhuang, L.; Lu, J. T. AuCu intermetallic nanoparticles: Surfactant-free synthesis and novel electrochemistry. J. Mater. Chem. 2012, 22, 15769–15774.

    CAS  Google Scholar 

  57. Liao, X. M.; Caps, V.; Chu, W.; Pitchon, V. Highly stable bimetallic Au-Cu supported on Al2O3 for selective CO oxidation in H2-rich gas: Effects of Cu/Au atomic ratio and sensitive influence of particle size. RSC Adv. 2016, 6, 4899–4907.

    CAS  Google Scholar 

  58. Delannoy, L.; Thrimurthulu, G.; Reddy, P. S.; Méthivier, C.; Nelayah, J.; Reddy, B. M.; Ricolleau, C.; Louis, C. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation. Phys. Chem. Chem. Phys. 2014, 16, 26514–26527.

    CAS  Google Scholar 

  59. Ghodselahi, T.; Vesaghi, M. A.; Shafiekhani, A.; Baghizadeh, A.; Lameii, M. XPS study of the Cu@Cu2O core-shell nanoparticles. Appl. Surf. Sci. 2008, 255, 2730–2734.

    CAS  Google Scholar 

  60. Yu, J. F.; Yang, M.; Zhang, J. X.; Ge, Q. J.; Zimina, A.; Pruessmann, T.; Zheng, L.; Grunwaldt, J. D.; Sun, J. Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol. ACS Catal. 2020, 10, 14694–14706.

    CAS  Google Scholar 

  61. Wu, G. J.; Guan, N. J.; Li, L. D. Low temperature CO oxidation on Cu-Cu2O/TiO2 catalyst prepared by photodeposition. Catal. Sci. Technol. 2011, 1, 601–608.

    CAS  Google Scholar 

  62. Shtyka, O.; Ciesielski, R.; Kedziora, A.; Maniukiewicz, W.; Dubkov, S.; Gromov, D.; Maniecki, T. Photocatalytic reduction of CO2 over me (Pt, Pd, Ni, Cu)/TiO2 catalysts. Top. Catal. 2020, 63, 113–120.

    CAS  Google Scholar 

  63. Zhang, X. P.; Wang, J. X.; Li, Z. F.; Cui, Y. Z.; Tan, B. J.; He, G. H. Effects of Ni modification on NO-CO reaction with MnOx-CuO/TiO2 catalysts. Can. J. Chem. Eng. 2018, 96, 1360–1366.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “Transformational Technologies for Clean Energy and Demonstration”, the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS, No. XDA21030900), DNL Cooperation Fund, CAS (No. DNL201903), and the National Natural Science Foundation of China (No. 51701201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Botao Qiao or Jiahui Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, F., Cheng, G., Hu, W. et al. Selective and stable Au-Cu bimetallic catalyst for CO-PROX. Nano Res. 16, 9031–9038 (2023). https://doi.org/10.1007/s12274-023-5672-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5672-4

Keywords

Navigation