Skip to main content
Log in

Recent advances in high-performance triboelectric nanogenerators

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of the Internet of Things (IoT) and artificial intelligence has accompanied the evolution of energy demand and structure in the new era, and the power sources for billions of distributed electronics and sensors have aroused worldwide interest. As an alternative energy harvesting technology, triboelectric nanogenerators (TENGs) have received remarkable attention and have shown attractive potential applications for use in micro/nano power sources, self-powered sensors, high-voltage power sources, and blue energy due to their advantages of small size, light weight, flexibility, low cost, and high efficiency at low frequency. In this review, we discuss high-performance TENGs from the perspectives of triboelectric charge density, output voltage, energy density, and corresponding quantification methods. Among these topics, the limitations, optimization methods and techniques, and potential directions to challenge these limits are comprehensively discussed and reviewed. Finally, we discuss the emerging challenges, strategies, and opportunities for research and development of highperformance TENGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672.

    Article  CAS  Google Scholar 

  2. Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems, and perspectives. Faraday Discuss. 2014, 176, 447–458.

    Article  CAS  Google Scholar 

  3. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  4. Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

    Article  Google Scholar 

  5. Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

    Article  CAS  Google Scholar 

  6. Hinchet, R.; Yoon, H. J.; Ryu, H.; Kim, M. K.; Choi, E. K.; Kim, D. S.; Kim, S. W. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Scincee 2019, 355, 491–494.

    Article  Google Scholar 

  7. Dong, Y.; Xu, S. W.; Zhang, C.; Zhang, L. Q.; Wang, D. A.; Xie, Y. Y.; Luo, N.; Feng, Y. G.; Wang, N. N.; Feng, M. et al. Gas-liquid two-phase flow-based triboelectric nanogenerator with ultrahigh output power. Sci. Adv. 2022, 8, eadd0464.

    Article  CAS  Google Scholar 

  8. Li, Y. H.; Zhao, Z. H.; Gao, Y. K.; Li, S. X.; Zhou, L. L.; Wang, J.; Wang, Z. L. Low-cost, environmentally friendly, and highperformance triboelectric nanogenerator based on a common waste material. ACS Appl. Mater. Interfaces 2021, 13, 30776–30784.

    Article  CAS  Google Scholar 

  9. Guo, H. Y.; Pu, X. J.; Chen, J.; Meng, Y.; Yeh, M. H.; Liu, G. L.; Tang, Q.; Chen, B. D.; Liu, D.; Qi, S. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 2018, 3, eaat2516.

    Article  Google Scholar 

  10. Li, S. X.; Zhao, Z. H.; Liu, D.; An, J.; Gao, Y. K.; Zhou, L. L.; Li, Y. H.; Cui, S. N.; Wang, J.; Wang, Z. L. A self-powered dual-type signal vector sensor for smart robotics and automatic vehicles. Adv. Mater. 2022, 34, 2110363.

    Article  CAS  Google Scholar 

  11. Zhang, J. H.; Li, Z. T.; Xu, J.; Li, J. A.; Yan, K.; Cheng, W.; Xin, M.; Zhu, T. S.; Du, J. H.; Chen, S. X. et al. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 2022, 13, 5839.

    Article  CAS  Google Scholar 

  12. Sun, Z. D.; Zhu, M. L.; Shan, X. C.; Lee, C. Augmented tactile-perception and haptic-feedback rings as human–machine interfaces aiming for immersive interactions. Nat. Commun. 2022, 13, 5224.

    Article  CAS  Google Scholar 

  13. Zhang, Q.; Liang, Q. J.; Nandakumar, D. K.; Qu, H.; Shi, Q. F.; Alzakia, F. I.; Tay, D. J. J.; Yang, L.; Zhang, X. P.; Suresh, L. et al. Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nat. Commun. 2021, 12, 616.

    Article  CAS  Google Scholar 

  14. Zhang, C. G.; He, L. X.; Zhou, L. L.; Yang, O.; Yuan, W.; Wei, X. L.; Liu, Y. B.; Lu, L.; Wang, J.; Wang, Z. L. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 2021, 5, 1613–1623.

    Article  Google Scholar 

  15. Xu, S. X.; Liu, G. L.; Wang, J. B.; Wen, H. G.; Cao, S.; Yao, H. L.; Wan, L. Y.; Wang, Z. L. Interaction between water wave and geometrical structures of floating triboelectric nanogenerators. Adv. Energy Mater. 2022, 12, 2103408.

    Article  CAS  Google Scholar 

  16. Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285.

    Article  Google Scholar 

  17. Li, Y. F.; Bouza, M.; Wu, C. S.; Guo, H. Y.; Huang, D. N.; Doron, G.; Temenoff, J. S.; Stecenko, A. A.; Wang, Z. L.; Fernández, F. M. Sub-nanoliter metabolomics via mass spectrometry to characterize volume-limited samples. Nat. Commun. 2020, 11, 5625.

    Article  CAS  Google Scholar 

  18. Yang, H.; Pang, Y. K.; Bu, T. Z.; Liu, W. B.; Luo, J. J.; Jiang, D. D.; Zhang, C.; Wang, Z. L. Triboelectric micromotors actuated by ultralow frequency mechanical stimuli. Nat. Commun. 2019, 10, 2309.

    Article  Google Scholar 

  19. Li, Q. Y.; Liu, W. L.; Yang, H. M.; He, W. C.; Long, L.; Wu, M. B.; Zhang, X. M.; Xi, Y.; Hu, C. G.; Wang, Z. L. Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode. Nano Energy 2021, 90, 106585.

    Article  CAS  Google Scholar 

  20. Zhou, L. L.; Liu, D.; Li, S. X.; Yin, X.; Zhang, C. L.; Li, X. Y.; Zhang, C. G.; Zhang, W.; Cao, X.; Wang, J. et al. Effective removing of hexavalent chromium from wasted water by triboelectric nanogenerator driven self-powered electrochemical system—Why pulsed DC is better than continuous DC? Nano Energy 2019, 64, 103915.

    Article  CAS  Google Scholar 

  21. Han, K.; Luo, J. J.; Feng, Y. W.; Xu, L.; Tang, W.; Wang, Z. L. Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators. Energy Environ. Sci. 2020, 13, 2450–2458.

    Article  CAS  Google Scholar 

  22. Zhang, S.; Chi, M. C.; Mo, J. L.; Liu, T.; Liu, Y. H.; Fu, Q.; Wang, J. L.; Luo, B.; Qin, Y.; Wang, S. F. et al. Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nat. Commun. 2022, 13, 4168.

    Article  CAS  Google Scholar 

  23. Huo, Z. Y.; Kim, Y. J.; Suh, I. Y.; Lee, D. M.; Lee, J. H.; Du, Y.; Wang, S.; Yoon, H. J.; Kim, S. W. Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nat. Commun. 2021, 12, 3693.

    Article  CAS  Google Scholar 

  24. Zhang, B. F.; Zhang, C. G.; Yang, O.; Yuan, W.; Liu, Y. B.; He, L. X.; Hu, Y. X.; Zhao, Z. H.; Zhou, L. L.; Wang, J. et al. Self-powered seawater electrolysis based on a triboelectric nanogenerator for hydrogen production. ACS Nano 2222, 16, 15286–15296.

    Article  Google Scholar 

  25. Liu, W. B.; Duo, Y. N.; Liu, J. Q.; Yuan, F. Y.; Li, L.; Li, L. C.; Wang, G.; Chen, B. H.; Wang, S. Q.; Yang, H. et al. Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces. Nat. Commun. 2022, 13, 5030.

    Article  CAS  Google Scholar 

  26. Zhu, M. L.; Sun, Z. D.; Chen, T.; Lee, C. Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nat. Commun. 2021, 12, 2692.

    Article  CAS  Google Scholar 

  27. Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.

    Article  Google Scholar 

  28. Wu, H. X.; Su, Z. M.; Shi, M. Y.; Miao, L. M.; Song, Y.; Chen, H. T.; Han, M. D.; Zhang, H. X. Self-powered noncontact electronic skin for motion sensing. Adv. Funct. Mater. 2018, 28, 1704641.

    Article  Google Scholar 

  29. Shen, S.; Yi, J.; Sun, Z. D.; Guo, Z. H.; He, T. Y.; Ma, L. Y.; Li, H. M.; Fu, J. J.; Lee, C.; Wang, Z. L. Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 2022, 14, 225.

    Article  CAS  Google Scholar 

  30. Zhu, M. L.; Sun, Z. D.; Zhang, Z. X.; Shi, Q. F.; He, T. Y.; Liu, H. C.; Chen, T.; Lee, C. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 2020, 6, eaaz8693.

    Article  CAS  Google Scholar 

  31. Wang, H. Y.; Fu, J. J.; Wang, J. Q.; Su, L.; Zi, Y. L. Tribophotonics: An emerging self-powered wireless solution toward smart city. Nano Energy 2022, 97, 107196.

    Article  CAS  Google Scholar 

  32. Jiang, C. M.; Li, X. J.; Ying, Y. B.; Ping, J. F. A multifunctional TENG yarn integrated into agrotextile for building intelligent agriculture. Nano Energy 2020, 74, 104863.

    Article  CAS  Google Scholar 

  33. Li, X. J.; Luo, J. J.; Han, K.; Shi, X.; Ren, Z. W.; Xi, Y.; Ying, Y. B.; Ping, J. F.; Wang, Z. L. Stimulation of ambient energy generated electric field on crop plant growth. Nat. Food 2022, 3, 133–142.

    Article  CAS  Google Scholar 

  34. Dong, K.; Peng, X.; An, J.; Wang, A. C.; Luo, J. J.; Sun, B. Z.; Wang, J.; Wang, Z. L. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 2020, 11, 2868.

    Article  CAS  Google Scholar 

  35. Wang, Z. L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502.

    Article  CAS  Google Scholar 

  36. Wu, H.; Wang, S.; Wang, Z. K.; Zi, Y. L. Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 2021, 12, 5470.

    Article  CAS  Google Scholar 

  37. He, W. C.; Liu, W. L.; Fu, S. K.; Wu, H. Y.; Shan, C. C.; Wang, Z.; Xi, Y.; Wang, X.; Guo, H. Y.; Liu, H. et al. Ultrahigh performance triboelectric nanogenerator enabled by charge transmission in interfacial lubrication and potential decentralization design. Research 2022, 2022, 9812865.

    Article  CAS  Google Scholar 

  38. He, W. C.; Shan, C. C.; Fu, S. K.; Wu, H. Y.; Wang, J.; Mu, Q. J.; Li, G.; Hu, C. G. Large harvested energy by self-excited liquid suspension triboelectric nanogenerator with optimized charge transportation behavior. Adv. Mater. 2023, 35, 2209657.

    Article  CAS  Google Scholar 

  39. Li, A. Y.; Zi, Y. L.; Guo, H. Y.; Wang, Z. L.; Fernandez, F. M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat. Nanotechnol. 2017, 12, 481–487.

    Article  CAS  Google Scholar 

  40. Cheng, J.; Ding, W. B.; Zi, Y. L.; Lu, Y. J.; Ji, L. H.; Liu, F.; Wu, C. S.; Wang, Z. L. Triboelectric microplasma powered by mechanical stimuli. Nat. Commun. 2018, 9, 3733.

    Article  Google Scholar 

  41. Guo, H. Y.; Chen, J.; Wang, L. F.; Wang, A. C.; Li, Y. F.; An, C. H.; He, J. H.; Hu, C. G.; Hsiao, V. K. S.; Wang, Z. L. A highly efficient triboelectric negative air ion generator. Nat. Sustain. 2021, 4, 147–153.

    Article  Google Scholar 

  42. Xu, W. H.; Jin, Y. K.; Li, W. B.; Song, Y. X.; Gao, S. W.; Zhang, B. P.; Wang, L. L.; Cui, M. M.; Yan, X. T.; Wang, Z. K. Triboelectric wetting for continuous droplet transport. Sci. Adv. 2022, 8, eade2085.

    Article  CAS  Google Scholar 

  43. Sun, J. F.; Zhang, L. J.; Zhou, Y. H.; Li, Z. J.; Libanori, A.; Tang, Q.; Huang, Y. Z.; Hu, C. G.; Guo, H. Y.; Peng, Y. et al. Highly efficient liquid droplet manipulation via human-motion-induced direct charge injection. Mater. Today 2022, 58, 41–47.

    Article  CAS  Google Scholar 

  44. Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

    Article  CAS  Google Scholar 

  45. Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

    Article  CAS  Google Scholar 

  46. Xu, L.; Bu, T. Z.; Yang, X. D.; Zhang, C.; Wang, Z. L. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 2018, 49, 625–633.

    Article  CAS  Google Scholar 

  47. Li, S. Y.; Nie, J. H.; Shi, Y. X.; Tao, X. L.; Wang, F.; Tian, J. W.; Lin, S. Q.; Chen, X. Y.; Wang, Z. L. Contributions of different functional groups to contact electrification of polymers. Adv. Mater. 2020, 32, 2001307.

    Article  CAS  Google Scholar 

  48. Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.

    Article  Google Scholar 

  49. Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

    Article  CAS  Google Scholar 

  50. Liu, W. L.; Wang, Z.; Wang, G.; Liu, G. L.; Chen, J.; Pu, X. J.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426.

    Article  Google Scholar 

  51. Wu, H. Y.; He, W. C.; Shan, C. C.; Wang, Z.; Fu, S. K.; Tang, Q.; Guo, H. Y.; Du, Y.; Liu, W. L.; Hu, C. G. Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Adv. Mater. 2022, 34, 2109918.

    Article  CAS  Google Scholar 

  52. Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

    Article  CAS  Google Scholar 

  53. Yin, X.; Liu, D.; Zhou, L. L.; Li, X. Y.; Zhang, C. L.; Cheng, P.; Guo, H. Y.; Song, W. X.; Wang, J.; Wang, Z. L. Structure and dimension effects on the performance of layered triboelectric nanogenerators in contact-separation mode. ACS Nano 2019, 13, 698–705.

    Article  CAS  Google Scholar 

  54. Lei, R.; Shi, Y. X.; Ding, Y. F.; Nie, J. H.; Li, S. Y.; Wang, F.; Zhai, H.; Chen, X. Y.; Wang, Z. L. Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 2020, 13, 2178–2190.

    Article  CAS  Google Scholar 

  55. He, W. C.; Liu, W. L.; Chen, J.; Wang, Z.; Liu, Y. K.; Pu, X. J.; Yang, H. M.; Tang, Q.; Yang, H. K.; Guo, H. Y. et al. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 2020, 11, 4277.

    Article  CAS  Google Scholar 

  56. Zhou, L. L.; Liu, D.; Zhao, Z. H.; Li, S. X.; Liu, Y. B.; Liu, L.; Gao, Y. K.; Wang, Z. L.; Wang, J. Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication. Adv. Energy Mater. 2020, 10, 2002920.

    Article  CAS  Google Scholar 

  57. Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.

    Article  Google Scholar 

  58. Shaw, P. E. The electrical charges from like solids. Nature 1926, 118, 659–660.

    Article  Google Scholar 

  59. Li, S. M.; Zhou, Y. S.; Zi, Y. L.; Zhang, G.; Wang, Z. L. Excluding contact electrification in surface potential measurement using kelvin probe force microscopy. ACS Nano 2016, 10, 2528–2535.

    Article  CAS  Google Scholar 

  60. Zhou, Y. S.; Liu, Y.; Zhu, G.; Lin, Z. H.; Pan, C. F.; Jing, Q. S.; Wang, Z. L. In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 2013, 13, 2771–2776.

    Article  CAS  Google Scholar 

  61. Zhou, Y. S.; Li, S. M.; Niu, S. M.; Wang, Z. L. Effect of contact-and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Res. 2016, 9, 3705–3713.

    Article  CAS  Google Scholar 

  62. Zhou, Y. S.; Wang, S. H.; Yang, Y.; Zhu, G.; Niu, S. M.; Lin, Z. H.; Liu, Y.; Wang, Z. L. Manipulating nanoscale contact electrification by an applied electric field. Nano Lett. 2014, 14, 1567–1572.

    Article  CAS  Google Scholar 

  63. Lin, S. Q.; Xu, C.; Xu, L.; Wang, Z. L. The overlapped electron-cloud model for electron transfer in contact electrification. Adv. Funct. Mater. 2020, 30, 1909724.

    Article  CAS  Google Scholar 

  64. Cao, Z. Y.; Wu, Z. B.; Ding, R.; Wang, S. W.; Chu, Y.; Xu, J. N.; Teng, J. C.; Ye, X. Y. A compact triboelectric nanogenerator with ultrahigh output energy density of 177.8 Jm−3 via retarding air breakdown. Nano Energy 2022, 93, 106891.

    Article  CAS  Google Scholar 

  65. Zhang, J. Y.; Li, S. X.; Zhao, Z. H.; Gao, Y. K.; Liu, D.; Wang, J.; Wang, Z. L. Highly sensitive three-dimensional scanning triboelectric sensor for digital twin applications. Nano Energy 2022, 97, 107198.

    Article  CAS  Google Scholar 

  66. Yuan, W.; Zhang, C. G.; Zhang, B. F.; Wei, X. L.; Yang, O.; Liu, Y. B.; He, L. X.; Cui, S. N.; Wang, J.; Wang, Z. L. Wearable, breathable, and waterproof triboelectric nanogenerators for harvesting human motion and raindrop energy. Adv. Mater. Technol. 2022, 7, 2101139.

    Article  Google Scholar 

  67. Sun, J. F.; Zhang, L. J.; Li, Z. J.; Tang, Q.; Chen, J.; Huang, Y. Z.; Hu, C. G.; Guo, H. Y.; Peng, Y.; Wang, Z. L. A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Adv. Mater. 2021, 33, 2102765.

    Article  CAS  Google Scholar 

  68. Peng, X.; Dong, K.; Ye, C. Y.; Jiang, Y.; Zhai, S. Y.; Cheng, R. W.; Liu, D.; Gao, X. P.; Wang, J.; Wang, Z. L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624.

    Article  CAS  Google Scholar 

  69. Qin, K.; Chen, C.; Pu, X. J.; Tang, Q.; He, W. C.; Liu, Y. K.; Zeng, Q. X.; Liu, G. L.; Guo, H. Y.; Hu, C. G. Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 2021, 13, 51.

    Article  Google Scholar 

  70. Shi, Q. F.; Wu, H.; Wang, H.; Wu, H. X.; Lee, C. Self-powered gyroscope ball using a triboelectric mechanism. Adv. Energy Mater. 2017, 7, 1701300.

    Article  Google Scholar 

  71. Zeng, Y. M.; Luo, Y.; Lu, Y. R.; Cao, X. Self-powered rain droplet sensor based on a liquid-solid triboelectric nanogenerator. Nano Energy 2022, 98, 107316.

    Article  CAS  Google Scholar 

  72. He, L. X.; Zhang, C. G.; Zhang, B. F.; Yang, O.; Yuan, W.; Zhou, L. L.; Zhao, Z. H.; Wu, Z. Y.; Wang, J.; Wang, Z. L. A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano 2022, 16, 6244–6254.

    Article  CAS  Google Scholar 

  73. Wang, Z. M.; An, J.; Nie, J. H.; Luo, J. J.; Shao, J. J.; Jiang, T.; Chen, B. D.; Tang, W.; Wang, Z. L. A self-powered angle sensor at nanoradian-resolution for robotic arms and personalized medicare. Adv. Mater. 2020, 32, 2001466.

    Article  CAS  Google Scholar 

  74. Shao, J. J.; Liu, D.; Willatzen, M.; Wang, Z. L. Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode. Appl. Phys. Rev. 2020, 7, 011405.

    Article  CAS  Google Scholar 

  75. Dharmasena, R. D. I. G.; Jayawardena, K. D. G. I.; Mills, C. A.; Deane, J. H. B.; Anguita, J. V.; Dorey, R. A.; Silva, S. R. P. Triboelectric nanogenerators: Providing a fundamental framework. Energy Environ. Sci. 2017, 10, 1801–1811.

    Article  Google Scholar 

  76. Wang, Z. L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 2020, 68, 104272.

    Article  CAS  Google Scholar 

  77. Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

    Article  CAS  Google Scholar 

  78. Xia, X.; Fu, J. J.; Zi, Y. L. A universal standardized method for output capability assessment of nanogenerators. Nat. Commun. 2019, 10, 4428.

    Article  Google Scholar 

  79. Wang, J.; Wu, C. S.; Dai, Y. J.; Zhao, Z. H.; Wang, A.; Zhang, T. J.; Wang, Z. L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 2017, 8, 88.

    Article  Google Scholar 

  80. Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720–6728.

    Article  CAS  Google Scholar 

  81. Liu, D.; Zhou, L. L.; Cui, S. N.; Gao, Y. K.; Li, S. X.; Zhao, Z. H.; Yi, Z. Y.; Zou, H. Y.; Fan, Y. J.; Wang, J. et al. Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown. Nat. Commun. 2022, 13, 6019.

    Article  CAS  Google Scholar 

  82. Zi, Y. L.; Wu, C. S.; Ding, W. B.; Wang, Z. L. Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as limited by air breakdown. Adv. Funct. Mater. 2017, 27, 1700049.

    Article  Google Scholar 

  83. Zhang, C. L.; Zhou, L. L.; Cheng, P.; Yin, X.; Liu, D.; Li, X. Y.; Guo, H. Y.; Wang, Z. L.; Wang, J. Surface charge density of triboelectric nanogenerators: Theoretical boundary and optimization methodology. Appl. Mater. Today 2020, 18, 100496.

    Article  Google Scholar 

  84. Fu, J. J.; Xia, X.; Xu, G. Q.; Li, X. Y.; Zi, Y. L. On the maximal output energy density of nanogenerators. ACS Nano 2019, 13, 13257–13263.

    Article  CAS  Google Scholar 

  85. Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

    Article  Google Scholar 

  86. Yang, W. X.; Wang, X. L.; Li, H. Q.; Wu, J.; Hu, Y. Q.; Li, Z. H.; Liu, H. Fundamental research on the effective contact area of micro-/nano-textured surface in triboelectric nanogenerator. Nano Energy 2019, 57, 41–47.

    Article  CAS  Google Scholar 

  87. Verners, O.; Lapčinskis, L.; Ģermane, L.; Kasikov, A.; Timusk, M.; Pudzs, K.; Ellis, A. V.; Sherrell, P. C.; Šutka, A. Smooth polymers charge negatively: Controlling contact electrification polarity in polymers. Nano Energy 2022, 104, 107914.

    Article  CAS  Google Scholar 

  88. Wang, S. H.; Zi, Y. L.; Zhou, Y. S.; Li, S. M.; Fan, F. R.; Lin, L.; Wang, Z. L. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A 2016, 4, 3728–3734.

    Article  CAS  Google Scholar 

  89. Shin, S. H.; Kwon, Y. H.; Kim, Y. H.; Jung, J. Y.; Lee, M. H.; Nah, J. Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 2015, 9, 4621–4627.

    Article  CAS  Google Scholar 

  90. Song, G.; Kim, Y.; Yu, S.; Kim, M. O.; Park, S. H.; Cho, S. M.; Velusamy, D. B.; Cho, S. H.; Kim, K. L.; Kim, J. et al. Molecularly engineered surface triboelectric nanogenerator by self-assembled monolayers (METS). Chem. Mater. 2015, 27, 4749–4755.

    Article  CAS  Google Scholar 

  91. Yu, B.; Yu, H.; Huang, T.; Wang, H. Z.; Zhu, M. F. A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density. Nano Energy 2018, 48, 464–470.

    Article  CAS  Google Scholar 

  92. Chun, J. S.; Ye, B. U.; Lee, J. W.; Choi, D.; Kang, C. Y.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nat. Commun. 2016, 7, 12985.

    Article  CAS  Google Scholar 

  93. Fu, J. J.; Xu, G. Q.; Li, C. H.; Xia, X.; Guan, D.; Li, J.; Huang, Z. Y.; Zi, Y. L. Achieving ultrahigh output energy density of triboelectric nanogenerators in high-pressure gas environment. Adv. Sci. 2020, 7, 2001757.

    Article  CAS  Google Scholar 

  94. Lin, S. Q.; Xu, L.; Xu, C.; Chen, X. Y.; Wang, A. C.; Zhang, B. B.; Lin, P.; Yang, Y.; Zhao, H. B.; Wang, Z. L. Electron transfer in nanoscale contact electrification: Effect of temperature in the metal-dielectric case. Adv. Mater. 2019, 31, 1808197.

    Article  Google Scholar 

  95. Xu, C.; Zi, Y. L.; Wang, A. C.; Zou, H. Y.; Dai, Y. J.; He, X.; Wang, P. H.; Wang, Y. C.; Feng, P. Z.; Li, D. W. et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, 1706790.

    Article  Google Scholar 

  96. Cheng, B. L.; Xu, Q.; Ding, Y. Q.; Bai, S.; Jia, X. F.; Yu, Y. D. C.; Wen, J.; Qin, Y. High performance temperature difference triboelectric nanogenerator. Nat. Commun. 2021, 12, 4782.

    Article  CAS  Google Scholar 

  97. Wang, K.; Qiu, Z. R.; Wang, J. X.; Liu, Y.; Chen, R.; An, H. Q.; Park, J. H.; Suk, C. H.; Wu, C. X.; Lin, J. T. et al. Effect of relative humidity on the enhancement of the triboelectrification efficiency utilizing water bridges between triboelectric materials. Nano Energy 2022, 93, 106880.

    Article  CAS  Google Scholar 

  98. Liu, L.; Zhou, L. L.; Zhang, C. G.; Zhao, Z. H.; Li, S. X.; Li, X. Y.; Yin, X.; Wang, J.; Wang, Z. L. A high humidity-resistive triboelectric nanogenerator via coupling of dielectric material selection and surface-charge engineering. J. Mater. Chem. A 2021, 9, 21357–21365.

    Article  CAS  Google Scholar 

  99. Wu, J.; Xi, Y. H.; Shi, Y. J. Toward wear-resistive, highly durable, and high performance triboelectric nanogenerator through interface liquid lubrication. Nano Energy 2020, 72, 104659.

    Article  CAS  Google Scholar 

  100. Liu, Y. K.; Liu, W. L.; Wang, Z.; He, W. C.; Tang, Q.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 2020, 11, 1599.

    Article  CAS  Google Scholar 

  101. Li, Y. H.; Zhao, Z. H.; Liu, L.; Zhou, L. L.; Liu, D.; Li, S. X.; Chen, S. Y.; Dai, Y. J.; Wang, J.; Wang, Z. L. Improved output performance of triboelectric nanogenerator by fast accumulation process of surface charges. Adv. Energy Mater. 2021, 11, 2100050.

    Article  CAS  Google Scholar 

  102. Zhou, L. L.; Gao, Y. K.; Liu, D.; Liu, L.; Zhao, Z. H.; Li, S. X.; Yuan, W.; Cui, S. N.; Wang, Z. L.; Wang, J. Achieving ultrarobust and humidity-resistant triboelectric nanogenerator by dual-capacitor enhancement system. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202101958.

  103. Lei, R.; Li, S. Y.; Shi, Y. X.; Yang, P.; Tao, X. L.; Zhai, H.; Wang, Z. L.; Chen, X. Y. Largely enhanced output of the non-contact mode triboelectric nanogenerator via a charge excitation based on a high insulation strategy. Adv. Energy Mater. 2022, 12, 2201708.

    Article  CAS  Google Scholar 

  104. Liu, L.; Zhao, Z. H.; Li, Y. H.; Li, X. Y.; Liu, D.; Li, S. X.; Gao, Y. K.; Zhou, L. L.; Wang, J.; Wang, Z. L. Achieving ultrahigh effective surface charge density of direct-current triboelectric nanogenerator in high humidity. Small 2022, 18, 2201402.

    Article  CAS  Google Scholar 

  105. Dai, K. R.; Liu, D.; Yin, Y. J.; Wang, X. F.; Wang, J.; You, Z.; Zhang, H.; Wang, Z. L. Transient physical modeling and comprehensive optimal design of air-breakdown direct-current triboelectric nanogenerators. Nano Energy 2022, 92, 106742.

    Article  CAS  Google Scholar 

  106. Zhao, Z. H.; Dai, Y. J.; Liu, D.; Zhou, L. L.; Li, S. X.; Wang, Z. L.; Wang, J. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Nat. Commun. 2020, 11, 6186.

    Article  CAS  Google Scholar 

  107. Liu, D.; Zhou, L. L.; Li, S. X.; Zhao, Z. H.; Yin, X.; Yi, Z. Y.; Zhang, C. L.; Li, X. Y.; Wang, J.; Wang, Z. L. Hugely enhanced output power of direct-current triboelectric nanogenerators by using electrostatic breakdown effect. Adv. Mater. Technol. 2020, 5, 2000289.

    Article  Google Scholar 

  108. Liu, D.; Yin, X.; Guo, H. Y.; Zhou, L. L.; Li, X. Y.; Zhang, C. L.; Wang, J.; Wang, Z. L. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 2019, 5, eaav6437.

    Article  CAS  Google Scholar 

  109. Zhao, Z. H.; Zhou, L. L.; Li, S. X.; Liu, D.; Li, Y. H.; Gao, Y. K.; Liu, Y. B.; Dai, Y. J.; Wang, J.; Wang, Z. L. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 2021, 12, 4686.

    Article  CAS  Google Scholar 

  110. Gao, Y. K.; Liu, D.; Zhou, L. L.; Li, S. X.; Zhao, Z. H.; Yin, X.; Chen, S. Y.; Wang, Z. L.; Wang, J. A robust rolling-mode direct-current triboelectric nanogenerator arising from electrostatic breakdown effect. Nano Energy 2021, 85, 106014.

    Article  CAS  Google Scholar 

  111. Chen, S. Y.; Liu, D.; Zhou, L. L.; Li, S. X.; Zhao, Z. H.; Cui, S. N.; Gao, Y. K.; Li, Y. H.; Wang, Z. L.; Wang, J. Improved output performance of direct-current triboelectric nanogenerator through field enhancing breakdown effect. Adv. Mater. Technol. 2021, 6, 2100195.

    Article  CAS  Google Scholar 

  112. Cui, S. N.; Zhou, L. L.; Liu, D.; Li, S. X.; Liu, L.; Chen, S. Y.; Zhao, Z. H.; Yuan, W.; Wang, Z. L.; Wang, J. Improving performance of triboelectric nanogenerators by dielectric enhancement effect. Matter 2022, 5, 180–193.

    Article  CAS  Google Scholar 

  113. Zhou, L. L.; Liu, D.; Li, S. X.; Zhao, Z. H.; Zhang, C. L.; Yin, X.; Liu, L.; Cui, S. N.; Wang, Z. L.; Wang, J. Rationally designed dualmode triboelectric nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects. Adv. Energy Mater. 2020, 10, 2000965.

    Article  CAS  Google Scholar 

  114. Wang, Z. Z.; Zhang, Z.; Chen, Y. K.; Gong, L. K.; Dong, S. C.; Zhou, H.; Lin, Y.; Lv, Y.; Liu, G. X.; Zhang, C. Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect. Energy Environ. Sci. 2022, 15, 2366–2373.

    Article  CAS  Google Scholar 

  115. Zhang, Z.; Wang, Z. Z.; Chen, Y. K.; Feng, Y.; Dong, S. C.; Zhou, H.; Wang, Z. L.; Zhang, C. Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation. Adv. Mater. 2022, 34, 2200146.

    Article  CAS  Google Scholar 

  116. Qiao, W. Y.; Zhao, Z. H.; Zhou, L. L.; Liu, D.; Li, S. X.; Yang, P. Y.; Li, X. Y.; Liu, J. Q.; Wang, J.; Wang, Z. L. Simultaneously enhancing direct-current density and lifetime of tribovotaic nanogenerator via interface lubrication. Adv. Funct. Mater. 2022, 32, 2208544.

    Article  CAS  Google Scholar 

  117. Meng, J.; Pan, C. X.; Li, L. W.; Guo, Z. H.; Xu, F.; Jia, L. Y.; Wang, Z. L.; Pu, X. Durable flexible direct current generation through the tribovoltaic effect in contact-separation mode. Energy Environ. Sci. 2022, 15, 5159–5167.

    Article  CAS  Google Scholar 

  118. Meng, J.; Guo, Z. H.; Pan, C. X.; Wang, L. Y.; Chang, C. Y.; Li, L. W.; Pu, X.; Wang, Z. L. Flexible textile direct-current generator based on the tribovoltaic effect at dynamic metal-semiconducting polymer interfaces. ACS Energy Lett. 2021, 6, 2442–2450.

    Article  CAS  Google Scholar 

  119. Wang, Z.; Liu, W. L.; Hu, J. L.; He, W. C.; Yang, H. K.; Ling, C.; Xi, Y.; Wang, X.; Liu, A. P.; Hu, C. G. Two voltages in contact-separation triboelectric nanogenerator: From asymmetry to symmetry for maximum output. Nano Energy 2020, 69, 104452.

    Article  CAS  Google Scholar 

  120. Xu, L.; Wu, H.; Yao, G.; Chen, L. B.; Yang, X. D.; Chen, B. D.; Huang, X.; Zhong, W.; Chen, X. Y.; Yin, Z. P. et al. Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion. ACS Nano 2018, 12, 10262–10271.

    Article  CAS  Google Scholar 

  121. Wang, Z.; Tang, Q.; Shan, C. C.; Du, Y.; He, W. C.; Fu, S. K.; Li, G.; Liu, A. P.; Liu, W. L.; Hu, C. G. Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design. Energy Environ. Sci. 2021, 14, 6627–6637.

    Article  Google Scholar 

  122. Wang, Z.; Liu, W. L.; He, W. C.; Guo, H. Y.; Long, L.; Xi, Y.; Wang, X.; Liu, A. P.; Hu, C. G. Ultrahigh electricity generation from low-frequency mechanical energy by efficient energy management. Joule 2021, 5, 441–455.

    Article  Google Scholar 

  123. Dai, K. R.; Wang, X. F.; Niu, S. M.; Yi, F.; Yin, Y. J.; Chen, L.; Zhang, Y.; You, Z. Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance. Nano Res. 2017, 10, 157–171.

    Article  Google Scholar 

  124. Yang, Z.; Yang, Y. Y.; Wang, H.; Liu, F.; Lu, Y. J.; Ji, L. H.; Wang, Z. L.; Cheng, J. Charge pumping for sliding-mode triboelectric nanogenerator with voltage stabilization and boosted current. Adv. Energy Mater. 2021, 11, 2101147.

    Article  CAS  Google Scholar 

  125. Bai, Y.; Xu, L.; Lin, S. Q.; Luo, J. J.; Qin, H. F.; Han, K.; Wang, Z. L. Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Adv. Energy Mater. 2020, 10, 2000605.

    Article  CAS  Google Scholar 

  126. Cheng, X. L.; Miao, L. M.; Song, Y.; Su, Z. M.; Chen, H. T.; Chen, X. X.; Zhang, J. X.; Zhang, H. X. High efficiency power management and charge boosting strategy for a triboelectric nanogenerator. Nano Energy 2017, 38, 438–446.

    Article  CAS  Google Scholar 

  127. Xu, S. X.; Zhang, L.; Ding, W. B.; Guo, H. Y.; Wang, X. H.; Wang, Z. L. Self-doubled-rectification of triboelectric nanogenerator. Nano Energy 2019, 66, 104165.

    Article  CAS  Google Scholar 

  128. Peng, J.; Kang, S. D.; Snyder, G. J. Optimization principles and the figure of merit for triboelectric generators. Sci. Adv. 2017, 3, eaap8576.

    Article  Google Scholar 

Download references

Acknowledgements

Research was supported by the National Key Research and Development Project from Minister of Science and Technology (No. 2021YFA1201602), the National Natural Science Foundation of China (Nos. U21A20147, 22109013, and 62204017), the China Postdoctoral Science Foundation (No. 2021M703172), the Innovation Project of Ocean Science and Technology (No. 22-3-3-hygg-18-hy), and the Fundamental Research Funds for the Central Universities (No. E1E46802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Wang or Zhong Lin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Gao, Y., Zhou, L. et al. Recent advances in high-performance triboelectric nanogenerators. Nano Res. 16, 11698–11717 (2023). https://doi.org/10.1007/s12274-023-5660-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5660-8

Keywords

Navigation