Skip to main content
Log in

The origins of catalytic selectivity for the electrochemical conversion of carbon dioxide to methanol

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The electrocatalytic conversion of carbon dioxide (CO2) into useful fuels and chemical feedstocks is an emerging route to alleviate global warming and reduce reliance on fossil fuels. Methanol (CH3OH), as one of the most significant and widely used liquid fuels that can be generated by CO2 reduction, is essential in the chemical industry. In this minireview, we unravel the origins of the selective formation of CH3OH via CO2 reduction, including catalyst composition designs, local structure modulations, and electrolyte/catalyst interface regulations. Finally, the remaining challenges and perspectives for the CO2-to-CH3OH reduction are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saier, M. H. Jr. Climate change, 2007. Water Air Soil Poll. 2007, 181, 1–2.

    Article  CAS  Google Scholar 

  2. Bushuyev, O. S.; de Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it. Joule 2018, 2, 825–832.

    Article  CAS  Google Scholar 

  3. Shafaat, H. S.; Yang, J. Y. Uniting biological and chemical strategies for selective CO2 reduction. Nat. Catal. 2021, 4, 928–933.

    Article  Google Scholar 

  4. Zhu, P.; Wang, H. T. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 2021, 4, 943–951.

    Article  CAS  Google Scholar 

  5. Liu, W. C.; Baek, J.; Somorjai, G. A. The methanol economy: Methane and carbon dioxide conversion. Top. Catal. 2018, 61, 530–541.

    Article  CAS  Google Scholar 

  6. Bozzano, G.; Manenti, F. Efficient methanol synthesis: Perspectives, technologies and optimization strategies. Prog. Energy Combust. Sci. 2016, 56, 71–105.

    Article  Google Scholar 

  7. Tian, Z.; Wang, Y.; Zhen, X. D.; Liu, Z. B. The effect of methanol production and application in internal combustion engines on emissions in the context of carbon neutrality: A review. Fuel 2022, 320, 123902.

    Article  CAS  Google Scholar 

  8. Kothandaraman, J.; Kar, S.; Goeppert, A.; Sen, R.; Prakash, G. K. S. Advances in homogeneous catalysis for low temperature methanol reforming in the context of the methanol economy. Top. Catal. 2018, 61, 542–559.

    Article  CAS  Google Scholar 

  9. Olah, G. A. After oil and gas: Methanol economy. Catal. Lett. 2004, 93, 1–2.

    Article  CAS  Google Scholar 

  10. Olah, G. A. Beyond oil and gas: The methanol economy. Angew. Chem., Int. Ed. 2005, 44, 2636–2639.

    Article  CAS  Google Scholar 

  11. Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567.

    Article  CAS  Google Scholar 

  12. Wang, Y. H.; Wang, Z. Y.; Dinh, C. T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C. S.; Gabardo, C. M.; Luo, M. C. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 2020, 3, 98–106.

    Article  CAS  Google Scholar 

  13. Back, S.; Jung, Y. TiC- and TiN-supported single-atom catalysts for dramatic improvements in CO2 electrochemical reduction to CH4. ACS Energy Lett. 2017, 2, 969–975.

    Article  CAS  Google Scholar 

  14. Ge, L.; Rabiee, H.; Li, M. R.; Subramanian, S.; Zheng, Y.; Lee, J. H.; Burdyny, T.; Wang, H. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 2022, 8, 663–692.

    Article  CAS  Google Scholar 

  15. Pan, F. P.; Yang, Y. Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 2020, 13, 2275–2309.

    Article  CAS  Google Scholar 

  16. Zhang, S. Z.; Jing, X. C.; Wang, Y. H.; Li, F. W. Towards carbonneutral methanol production from carbon dioxide electroreduction. ChemNanoMat 2021, 7, 728–736.

    Article  Google Scholar 

  17. Liu, Y. R.; Li, F. F.; Zhang, X. P.; Ji, X. Y. Recent progress on electrochemical reduction of CO2 to methanol. Curr. Opin. Green Sustain. Chem. 2020, 23, 10–17.

    Article  CAS  Google Scholar 

  18. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

    Article  CAS  Google Scholar 

  19. Nie, X. W.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps. Angew. Chem., Int. Ed. 2013, 52, 2459–2462.

    Article  CAS  Google Scholar 

  20. Low, Q. H.; Loo, N. W. X.; Calle-Vallejo, F.; Yeo, B. S. Enhanced electroreduction of carbon dioxide to methanol using zinc dendrites pulse-deposited on silver foam. Angew. Chem., Int. Ed. 2019, 58, 2256–2260.

    Article  CAS  Google Scholar 

  21. Kong, S. Y.; Lv, X. M.; Wang, X.; Liu, Z. Z.; Li, Z. C.; Jia, B. Q.; Sun, D.; Yang, C.; Liu, L. J.; Guan, A. X. et al. Delocalization state-induced selective bond breaking for efficient methanol electrosynthesis from CO2. Nat. Catal. 2023, 6, 6–15.

    Article  CAS  Google Scholar 

  22. Zhai, L. N.; Cui, C. N.; Zhao, Y. T.; Zhu, X. L.; Han, J. Y.; Wang, H.; Ge, Q. F. Titania-modified silver electrocatalyst for selective CO2 reduction to CH3OH and CH4 from DFT study. J. Phys. Chem. C 2017, 121, 16275–16282.

    Article  CAS  Google Scholar 

  23. Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113.

    Article  CAS  Google Scholar 

  24. Nie, X. W.; Luo, W. J.; Janik, M. J.; Asthagiri, A. Reaction mechanisms of CO2 electrochemical reduction on Cu (111) determined with density functional theory. J. Catal. 2014, 312, 108–122.

    Article  CAS  Google Scholar 

  25. Zhang, G.; Wang, T.; Zhang, M. M.; Li, L. L.; Cheng, D. F.; Zhen, S. Y.; Wang, Y. T.; Qin, J.; Zhao, Z. J.; Gong, J. L. Selective CO2 electroreduction to methanol via enhanced oxygen bonding. Nat. Commun. 2022, 13, 7768.

    Article  CAS  Google Scholar 

  26. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050–7059.

    Article  CAS  Google Scholar 

  27. Hazarika, J.; Manna, M. S. Electrochemical reduction of CO2 to methanol with synthesized Cu2O nanocatalyst: Study of the selectivity. Electrochim. Acta 2019, 328, 135053.

    Article  CAS  Google Scholar 

  28. Yang, D. X.; Zhu, Q. G.; Chen, C. J.; Liu, H. Z.; Liu, Z. M.; Zhao, Z. J.; Zhang, X. Y.; Liu, S. J.; Han, B. X. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 2019, 10, 677.

    Article  Google Scholar 

  29. Usman, M.; Humayun, M.; Garba, M. D.; Ullah, L.; Zeb, Z.; Helal, A.; Suliman, M. H.; Alfaifi, B. Y.; Iqbal, N.; Abdinejad, M. et al. Electrochemical reduction of CO2: A review of cobalt based catalysts for carbon dioxide conversion to fuels. Nanomaterials 2021, 11, 2029.

    Article  CAS  Google Scholar 

  30. Huang, J. Z.; Guo, X. R.; Yue, G. Q.; Hu, Q.; Wang, L. S. Boosting CH3OH production in electrocatalytic CO2 reduction over partially oxidized 5 nm cobalt nanoparticles dispersed on single-layer nitrogen-doped graphene. ACS Appl. Mater. Interfaces 2018, 10, 44403–44414.

    Article  CAS  Google Scholar 

  31. Ulissi, Z. W.; Tang, M. T.; Xiao, J. P.; Liu, X. Y.; Torelli, D. A.; Karamad, M.; Cummins, K.; Hahn, C.; Lewis, N. S.; Jaramillo, T. F. et al. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal. 2017, 7, 6600–6608.

    Article  CAS  Google Scholar 

  32. Zhu, W. L.; Tackett, B. M.; Chen, J. G.; Jiao, F. Bimetallic electrocatalysts for CO2 reduction. Top. Curr. Chem. 2018, 376, 41.

    Article  Google Scholar 

  33. Lu, L.; Sun, X. F.; Ma, J.; Yang, D. X.; Wu, H. H.; Zhang, B. X.; Zhang, J. L.; Han, B. X. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angew. Chem., Int. Ed. 2018, 57, 14149–14153.

    Article  CAS  Google Scholar 

  34. Sun, X. F.; Zhu, Q. G.; Kang, X. C.; Liu, H. Z.; Qian, Q. L.; Zhang, Z. F.; Han, B. X. Molybdenum-bismuth bimetallic chalcogenide nanosheets for highly efficient electrocatalytic reduction of carbon dioxide to methanol. Angew. Chem., Int. Ed. 2016, 55, 6771–6775.

    Article  CAS  Google Scholar 

  35. Guo, W. W.; Liu, S. J.; Tan, X. X.; Wu, R. Z.; Yan, X. P.; Chen, C. J.; Zhu, Q. G.; Zheng, L. R.; Ma, J. Y.; Zhang, J. et al. Highly efficient CO2 electroreduction to methanol through atomically dispersed Sn coupled with defective CuO catalysts. Angew. Chem., Int. Ed. 2021, 60, 21979–21987.

    Article  CAS  Google Scholar 

  36. Huang, W. J.; Yuan, G. A composite heterogeneous catalyst C-Py-Sn-Zn for selective electrochemical reduction of CO2 to methanol. Electrochem. Commun. 2020, 118, 106789.

    Article  CAS  Google Scholar 

  37. Wang, L. W.; Xu, Y. D.; Chen, T.; Wei, D. L.; Guo, X. F.; Peng, L. M.; Xue, N. H.; Zhu, Y.; Ding, M. N.; Ding, W. P. Ternary heterostructural CoO/CN/Ni catalyst for promoted CO2 electroreduction to methanol. J. Catal. 2021, 393, 83–91.

    Article  CAS  Google Scholar 

  38. Li, P. S.; Bi, J. H.; Liu, J. Y.; Zhu, Q. G.; Chen, C. J.; Sun, X. F.; Zhang, J. L.; Han, B. X. In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts. Nat. Commun. 2022, 13, 1965.

    Article  CAS  Google Scholar 

  39. Wu, J. J.; Ma, S. C.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L. Y.; Chopra, N.; Odeh, I. N.; Vajtai, R. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 2016, 7, 13869.

    Article  CAS  Google Scholar 

  40. Liu, Y. M.; Zhang, Y. J.; Cheng, K.; Quan, X.; Fan, X. F.; Su, Y.; Chen, S.; Zhao, H. M.; Zhang, Y. B.; Yu, H. T. Selective electrochemical reduction of carbon dioxide to ethanol on a boron- and nitrogen-co-doped nanodiamond. Angew. Chem., Int. Ed. 2017, 56, 15607–15611.

    Article  CAS  Google Scholar 

  41. Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631–11636.

    Article  CAS  Google Scholar 

  42. Mou, S. Y.; Wu, T. W.; Xie, J. F.; Zhang, Y. Ji, L.; Huang, H.; Wang, T.; Luo, Y. L.; Xiong, X. L.; Tang, B.; Sun, X. P. Boron phosphide nanoparticles: A nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv. Mater. 2019, 31, 1903499.

    Article  Google Scholar 

  43. Ross, M. B.; de Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

    Article  CAS  Google Scholar 

  44. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  45. Periasamy, A. P.; Ravindranath, R.; Senthil Kumar, S. M.; Wu, W. P.; Jian, T. R.; Chang, H. T. Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol. Nanoscale 2018, 10, 11869–11880.

    Article  CAS  Google Scholar 

  46. Yang, H. P.; Wu, Y.; Li, G. D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C. X. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723.

    Article  CAS  Google Scholar 

  47. Daiyan, R.; Saputera, W. H.; Zhang, Q. R.; Lovell, E.; Lim, S.; Ng, Y. H.; Lu, X. Y.; Amal, R. 3D heterostructured copper electrode for conversion of carbon dioxide to alcohols at low overpotentials. Adv. Sustainable Syst. 2019, 3, 1800064.

    Article  Google Scholar 

  48. Payra, S.; Shenoy, S.; Chakraborty, C.; Tarafder, K.; Roy, S. Structure-sensitive electrocatalytic reduction of CO2 to methanol over carbon-supported intermetallic PtZn nano-alloys. ACS Appl. Mater. Interfaces 2020, 12, 19402–19414.

    Article  CAS  Google Scholar 

  49. Roy, A.; Jadhav, H. S.; Gil Seo, J. Cu2O/CuO electrocatalyst for electrochemical reduction of carbon dioxide to methanol. Electroanalysis 2021, 33, 705–712.

    Article  CAS  Google Scholar 

  50. Malik, M. I.; Malaibari, Z. O.; Atieh, M.; Abussaud, B. Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O. Chem. Eng. Sci. 2016, 152, 468–477.

    Article  Google Scholar 

  51. Bagchi, D.; Raj, J.; Singh, A. K.; Cherevotan, A.; Roy, S.; Manoj, K. S.; Vinod, C. P.; Peter, S. C. Structure-tailored surface oxide on Cu-Ga intermetallics enhances CO2 reduction selectivity to methanol at ultralow potential. Adv. Mater. 2022, 34, 2109426.

    Article  CAS  Google Scholar 

  52. Marepally, B. C.; Ampelli, C.; Genovese, C.; Sayah, R.; Veyre, L.; Dalverny, C.; Thieuleux, C.; Quadrelli, E. A.; Perathoner, S.; Centi, G. Supported metallic nanoparticles prepared by an organometallic route to boost the electrocatalytic conversion of CO2. J. CO2Util. 2021, 50, 101613.

    Article  CAS  Google Scholar 

  53. Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. F. et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652–664.

    Article  CAS  Google Scholar 

  54. Kramer, W. W.; McCrory, C. C. L. Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine. Chem. Sci. 2016, 7, 2506–2515.

    Article  CAS  Google Scholar 

  55. Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. L. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019, 575, 639–642.

    Article  CAS  Google Scholar 

  56. Casado-Coterillo, C.; Marcos-Madrazo, A.; Garea, A.; Irabien, Á. An analysis of research on membrane-coated electrodes in the 2001–2019 period: Potential application to CO2 capture and utilization. Catalysts 2020, 10, 1226.

    Article  CAS  Google Scholar 

  57. Marcos-Madrazo, A.; Casado-Coterillo, C.; Irabien, Á. Sustainable membrane-coated electrodes for CO2 electroreduction to methanol in alkaline media. ChemElectroChem 2019, 6, 5273–5282.

    Article  CAS  Google Scholar 

  58. Tang, T. M.; Wang, Z. L.; Guan, J. Q. Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M-N-C materials. Adv. Funct. Mater. 2022, 32, 2111504.

    Article  CAS  Google Scholar 

  59. Han, S. G.; Ma, D. D.; Zhu, Q. L. Atomically structural regulations of carbon-based single-atom catalysts for electrochemical CO2 reduction. Small Methods 2021, 5, 2100102.

    Article  CAS  Google Scholar 

  60. Wang, J. J.; Wang, G. J.; Zhang, J. F.; Wang, Y. D.; Wu, H.; Zheng, X. R.; Ding, J.; Han, X. P.; Deng, Y. D.; Hu, W. B. Inversely tuning the CO2 electroreduction and hydrogen evolution activity on metal oxide via heteroatom doping. Angew. Chem., Int. Ed. 2021, 60, 7602–7606.

    Article  CAS  Google Scholar 

  61. Deng, B. W.; Huang, M.; Zhao, X. L.; Mou, S. Y.; Dong, F. Interfacial electrolyte effects on electrocatalytic CO2 reduction. ACS Catal. 2022, 12, 331–362.

    Article  CAS  Google Scholar 

  62. Arán-Ais, R. M.; Gao, D. F.; Roldan Cuenya, B. Structure- and electrolyte-sensitivity in CO2 electroreduction. Acc. Chem. Res. 2018, 51, 2906–2917.

    Article  Google Scholar 

  63. Marcandalli, G.; Monteiro, M. C. O.; Goyal, A.; Koper, M. T. M. Electrolyte effects on CO2 electrochemical reduction to CO. Acc. Chem. Res. 2022, 55, 1900–1911.

    Article  CAS  Google Scholar 

  64. Xu, A.; Govindarajan, N.; Kastlunger, G.; Vijay, S.; Chan, K. R. Theories for electrolyte effects in CO2 electroreduction. Acc. Chem. Res. 2022, 55, 495–503.

    Article  CAS  Google Scholar 

  65. Kim, Y. G.; Baricuatro, J. H.; Soriaga, M. P. Surface reconstruction of polycrystalline Cu electrodes in aqueous KHCO3 electrolyte at potentials in the early stages of CO2 reduction. Electrocatalysis 2018, 9, 526–530.

    Article  CAS  Google Scholar 

  66. Kim, Y. G.; Baricuatro, J. H.; Javier, A.; Gregoire, J. M.; Soriaga, M. P. The evolution of the polycrystalline copper surface, first to Cu (111) and then to Cu (100), at a fixed CO2RR potential: A study by operando EC-STM. Langmuir 2014, 30, 15053–15056.

    Article  CAS  Google Scholar 

  67. Zhao, S. F.; Horne, M.; Bond, A. M.; Zhang, J. Is the imidazolium cation a unique promoter for electrocatalytic reduction of carbon dioxide. J. Phys. Chem. C 2016, 120, 23989–24001.

    Article  CAS  Google Scholar 

  68. Kumeda, T.; Tajiri, H.; Sakata, O.; Hoshi, N.; Nakamura, M. Effect of hydrophobic cations on the oxygen reduction reaction on single-crystal platinum electrodes. Nat. Commun. 2018, 9, 4378.

    Article  Google Scholar 

  69. Banerjee, S.; Zhang, Z. Q.; Hall, A. S.; Thoi, V. S. Surfactant perturbation of cation interactions at the electrode–electrolyte interface in carbon dioxide reduction. ACS Catal. 2020, 10, 9907–9914.

    Article  CAS  Google Scholar 

  70. Albo, J.; Beobide, G.; Castaño, P.; Irabien, A. Methanol electrosynthesis from CO2 at Cu2O/ZnO prompted by pyridine-based aqueous solutions. J. CO2Util. 2017, 18, 164–172.

    Article  CAS  Google Scholar 

  71. Yan, Y.; Zeitler, E. L.; Gu, J.; Hu, Y.; Bocarsly, A. B. Electrochemistry of aqueous pyridinium: Exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J. Am. Chem. Soc. 2013, 135, 14020–14023.

    Article  CAS  Google Scholar 

  72. Lee, J. H. Q.; Lauw, L. S. J.; Webster, R. D. The electrochemical reduction of carbon dioxide (CO2) to methanol in the presence of pyridoxine (vitamin B6). Electrochem. Commun. 2016, 64, 69–73.

    Article  CAS  Google Scholar 

  73. Rabiee, A.; Nematollahi, D. Pyridinium-facilitated CO2 electroreduction on Pt nanowire: Enhanced electrochemical performance in CO2 conversion. Environ. Prog. Sustainable 2019, 38, 112–117.

    Article  CAS  Google Scholar 

  74. MacFarlane, D. R.; Forsyth, M.; Howlett, P. C.; Kar, M.; Passerini, S.; Pringle, J. M.; Ohno, H.; Watanabe, M.; Yan, F.; Zheng, W. J. et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 2016, 1, 15005.

    Article  CAS  Google Scholar 

  75. Singh, S. K.; Savoy, A. W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038.

    Article  CAS  Google Scholar 

  76. Cui, Y. D.; He, B.; Liu, X. M.; Sun, J. Ionic liquids-promoted electrocatalytic reduction of carbon dioxide. Ind. Eng. Chem. Res. 2020, 59, 20235–20252.

    Article  CAS  Google Scholar 

  77. Jutz, F.; Andanson, J. M.; Baiker, A. Ionic liquids and dense carbon dioxide: A beneficial biphasic system for catalysis. Chem. Rev. 2011, 111, 322–353.

    Article  CAS  Google Scholar 

  78. Zhu, Q. G.; Ma, J.; Kang, X. C.; Sun, X. F.; Liu, H. Z.; Hu, J. Y.; Liu, Z. M.; Han, B. X. Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture. Angew. Chem., Int. Ed. 2016, 55, 9012–9016.

    Article  CAS  Google Scholar 

  79. Koper, M. T. M. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 2013, 4, 2710–2723.

    Article  CAS  Google Scholar 

  80. Sa, Y. J.; Lee, C. W.; Lee, S. Y.; Na, J.; Lee, U.; Hwang, Y. J. Catalyst–electrolyte interface chemistry for electrochemical CO2 reduction. Chem. Soc. Rev. 2020, 49, 6632–6665.

    Article  CAS  Google Scholar 

  81. Jiwanti, P. K.; Natsui, K.; Nakata, K.; Einaga, Y. Selective production of methanol by the electrochemical reduction of CO2 on boron-doped diamond electrodes in aqueous ammonia solution. RSC Adv. 2016, 6, 102214–102217.

    Article  CAS  Google Scholar 

  82. Liu, X. Y.; Li, B. Q.; Ni, B.; Wang, L.; Peng, H. J. A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts. J. Energy Chem. 2022, 64, 263–275.

    Article  CAS  Google Scholar 

  83. Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.

    Article  CAS  Google Scholar 

  84. Yoshio, H.; Katsuhei, K.; Shin, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 1985, 14, 1695–1698.

    Article  Google Scholar 

  85. Zhang, L. X.; Hu, S. Q.; Zhu, X. F.; Yang, W. S. Electrochemical reduction of CO2 in solid oxide electrolysis cells. J. Energy Chem. 2017, 26, 593–601.

    Article  Google Scholar 

  86. Zhao, C. C.; Wang, J. L. Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts. Chem. Eng. J. 2016, 293, 161–170.

    Article  CAS  Google Scholar 

  87. Liu, K.; Smith, W. A.; Burdyny, T. Introductory guide to assembling and operating gas diffusion electrodes for electrochemical CO2 reduction. ACS Energy Lett. 2019, 4, 639–643.

    Article  CAS  Google Scholar 

  88. Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A.; Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910–918.

    Article  CAS  Google Scholar 

  89. Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

    Article  CAS  Google Scholar 

  90. Zhang, Z.; Huang, X.; Chen, Z.; Zhu, J. J.; Endrődi, B.; Janáky, C.; Deng, D. H. Membrane electrode assembly for electrocatalytic CO2 reduction: Principle and application. Angew. Chem., Int. Ed. 2023, e202302789.

  91. Tackett, B. M.; Gomez, E.; Chen, J. G. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2019, 2, 381–386.

    Article  CAS  Google Scholar 

  92. Ponsard, L.; Nicolas, E.; Tran, N. H.; Lamaison, S.; Wakerley, D.; Cantat, T.; Fontecave, M. Coupling electrocatalytic CO2 reduction with thermocatalysis enables the formation of a lactone monomer. ChemSusChem 2021, 14, 2198–2204.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22178104, U22B20143, 21838003, and 22008069), Shanghai Municipal Science and Technology Major Project, the Shanghai Scientific and Technological Innovation Project (No. 22dz1205900), “the Fundamental Research Funds for the Central Universities”, Shanghai Rising-Star Program (No. 23QA1402200), and the Shanghai Sailing Program (No. 20YF1410200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhang Li or Chunzhong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wang, Y., Li, Y. et al. The origins of catalytic selectivity for the electrochemical conversion of carbon dioxide to methanol. Nano Res. 17, 5–17 (2024). https://doi.org/10.1007/s12274-023-5653-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5653-7

Keywords

Navigation