Skip to main content
Log in

Copper diffusion related phase change and voltage decay in CuS cathode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Copper sulfide (CuS) is a promising cathode for lithium-ion batteries (LIBs) due to its impeccable theoretical energy density (∼ 1015 Wh·kg−1 and 4743 Wh·L−1). However, it suffers from voltage decay leaded energy density loss and low energy efficiency, which hinders its application. In this work, with combined ex-situlin-situ X-ray diffraction (XRD) and electrochemical analysis, we explore detailed degradation mechanisms. For the voltage decay, it is attributed to a spontaneous reaction between CuS cathode and copper current collector (Cu CC). This reaction leads to energy density loss and active materials degradation (CuS → Cu1.81S). As for energy efficiency, CuS undergoes a series of phase transformations. The main phase transition processes are CuS → α-LiCuS → Li2−xCuxS + Cu → Li2S + Cu for discharge; Li2S + Cu → Li2−xCuxS → β-LiCuS → CuS for charge. Here, α-LiCuS, β-LiCuS, and Li2−xCuxS are newly identified phases. These phase changes are driven by topotactic-reaction-related copper diffusion and rearrangement. This work demonstrates the significance of transition-metal diffusion in the intermediates formation and phase change in conversion-type materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, F. X.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 2017, 10, 435–459.

    Article  CAS  Google Scholar 

  2. Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustainable Energy Rev. 2018, 89, 292–308.

    Article  Google Scholar 

  3. Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res., in press,DOI: https://doi.org/10.1007/s12274-022-5215-4.

  4. Zhao, S. Q.; Guo, Z. Q.; Yan, K.; Wan, S. W.; He, F. R.; Sun, B.; Wang, G. X. Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Mater. 2021, 34, 716–734.

    Article  Google Scholar 

  5. Wang, Y. Q.; An, N.; Wen, L.; Wang, L.; Jiang, X. T.; Hou, F.; Yin, Y. X.; Liang, J. Recent progress on the recycling technology of Li-ion batteries. J. Energy Chem. 2021, 55, 391–419.

    Article  CAS  Google Scholar 

  6. Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.

    Article  CAS  Google Scholar 

  7. Wang, H. M.; Chen, S. S.; Fu, C. L.; Ding, Y.; Liu, G. R.; Cao, Y. L.; Chen, Z. X. Recent advances in conversion-type electrode materials for post lithium-ion batteries. ACS Mater. Lett. 2021, 3, 956–977.

    Article  CAS  Google Scholar 

  8. Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.

    Article  CAS  Google Scholar 

  9. Wang, L. P.; Wu, Z. R.; Zou, J.; Gao, P.; Niu, X. B.; Li, H.; Chen, L. Q. Li-free cathode materials for high energy density lithium batteries. Joule 2019, 3, 2086–2102.

    Article  CAS  Google Scholar 

  10. Li, L. S.; Jacobs, R.; Gao, P.; Gan, L. Y.; Wang, F.; Morgan, D.; Jin, S. Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. J. Am. Chem. Soc. 2016, 138, 2838–2848.

    Article  CAS  Google Scholar 

  11. Wang, F.; Robert, R.; Chernova, N. A.; Pereira, N.; Omenya, F.; Badway, F.; Hua, X.; Ruotolo, M.; Zhang, R. G.; Wu, L. J. et al. Conversion reaction mechanisms in lithium ion batteries: Study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 2011, 133, 18828–18836.

    Article  CAS  Google Scholar 

  12. Jiang, J.; Ji, H. N.; Chen, P. Y.; Ouyang, C. Y.; Niu, X. B.; Li, H.; Wang, L. P. The influence of electrolyte concentration and solvent on operational voltage of Li/CFx primary batteries elucidated by Nernst Equation. J. Power Sources 2022, 527, 231193.

    Article  CAS  Google Scholar 

  13. Zou, J.; Yuan, K. G.; Zhao, J.; Wang, B. J.; Chen, S. Y.; Huang, J. Y.; Li, H.; Niu, X. B.; Wang, L. P. Delithiation-driven topotactic reaction endows superior cycling performances for high-energy-density FeSx (1 ≤ x ≤ 1.14) cathodes. Energy Storage Mater. 2021, 43, 579–584.

    Article  Google Scholar 

  14. Jiang, K.; Chen, Z. H.; Meng, X. B. CuS and Cu2S as cathode materials for lithium batteries: A review. ChemElectroChem 2019, 6, 2825–2840.

    Article  CAS  Google Scholar 

  15. Bonino, F.; Lazzari, M.; Rivolta, B.; Scrosati, B. Electrochemical behavior of solid cathode materials in organic electrolyte lithium batteries: Copper sulfides. J. Electrochem. Soc. 1984, 131, 1498–1502.

    Article  CAS  Google Scholar 

  16. Exnar, I.; Hep, J. Copper(II) sulfide as cathode active material in secondary lithium batteries. J. Power Sources 1993, 44, 701–705.

    Article  CAS  Google Scholar 

  17. Mazor, H.; Golodnitsky, D.; Burstein, L.; Peled, E. High power copper sulfide cathodes for thin-film microbatteries. Electrochem. Solid-State Lett. 2009, 12, A232.

    Article  CAS  Google Scholar 

  18. Wang, X. X.; Wang, Y. H.; Li, X.; Liu, B.; Zhao, J. B. A facile synthesis of copper sulfides composite with lithium-storage properties. J. Power Sources 2015, 281, 185–191.

    Article  CAS  Google Scholar 

  19. Zhang, Z.; An, Y. L.; Feng, J. K.; Ci, L.; Duan, B. H.; Huang, W.; Dong, C. L.; Xiong, S. L. Carbon coated copper sulfides nanosheets synthesized via directly sulfurizing metal-organic frameworks for lithium batteries. Mater. Lett. 2016, 181, 340–344.

    Article  CAS  Google Scholar 

  20. Liu, H. Q.; He, Y. N.; Zhang, H.; Cao, K. Z.; Wang, S. D.; Jiang, Y.; Jing, Q. S.; Jiao, L. F. Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure. Chem. Eng. J. 2021, 425, 130548.

    Article  CAS  Google Scholar 

  21. Yamakawa, N.; Jiang, M.; Grey, C. P. Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-tate NMR spectroscopy and X-ray diffraction. Chem. Mater. 2009, 21, 3162–3176.

    Article  CAS  Google Scholar 

  22. He, K.; Yao, Z. P.; Hwang, S.; Li, N.; Sun, K.; Gan, H.; Du, Y. P.; Zhang, H.; Wolverton, C.; Su, D. Kinetically-driven phase transformation during lithiation in copper sulfide nanoflakes. Nano Lett. 2017, 17, 5726–5733.

    Article  CAS  Google Scholar 

  23. Débart, A.; Dupont, L.; Patrice, R.; Tarascon, J. M. Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide. Solid State Sci. 2006, 8, 640–651.

    Article  Google Scholar 

  24. Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

    Article  CAS  Google Scholar 

  25. Fu, Y. Z.; Manthiram, A. Electrochemical properties of Cu2S with ether-based electrolyte in Li-ion batteries. Electrochim. Acta 2013, 109, 716–719.

    Article  CAS  Google Scholar 

  26. Li, X.; He, X. Y.; Shi, C. M.; Liu, B.; Zhang, Y. Y.; Wu, S. Q.; Zhu, Z. Z.; Zhao, J. B. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries. ChemSusChem 2014, 7, 3328–3333.

    Article  CAS  Google Scholar 

  27. Wang, Y. R.; Zhang, X. W.; Chen, P.; Liao, H. T.; Cheng, S. Q. In situ preparation of CuS cathode with unique stability and high rate performance for lithium ion batteries. Electrochim. Acta 2012, 80, 264–268.

    Article  CAS  Google Scholar 

  28. Wang, A. P.; Kadam, S.; Li, H.; Shi, S. Q.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 2018, 4, 15.

    Article  Google Scholar 

  29. Frankenberger, M.; Trunk, M.; Seidlmayer, S.; Dinter, A.; Dittloff, J.; Werner, L.; Gernhäuser, R.; Revay, Z.; Märkisch, B.; Gilles, R. et al. SEI growth impacts of lamination, formation and cycling in lithium ion batteries. Batteries 2020, 6, 21.

    Article  CAS  Google Scholar 

  30. Maier, J. Thermodynamics of Electrochemical Lithium Storage. Angew. Chem., Int. Ed. 2013, 52, 4998–5026.

    Article  CAS  Google Scholar 

  31. Chase, M. W. NIST-JANAF Thermochemical Tables 4th ed; Springer Verlag, 1998.

  32. Stølen, S.; Grønvold, F. Thermodynamic properties of the CuS-Cu2S system. In Thermochemistry of Alloys. Brodowsky, H.; Schaller, H. J., Eds.; Springer: Dordrecht, 1989; pp 213–

    Chapter  Google Scholar 

  33. Wang, Y. C.; Chao, D. L.; Wang, Z. Z.; Ni, J. F.; Li, L. An energetic CuS-Cu battery system based on CuS nanosheet arrays. ACS Nano 2021, 15, 5420–5427.

    Article  CAS  Google Scholar 

  34. Singh, R.; Witte, R.; Mu, X. K.; Brezesinski, T.; Hahn, H.; Kruk, R.; Breitung, B. Reversible control of magnetism: On the conversion of hydrated FeF3 with Li to Fe and LiF. J. Mater. Chem. A 2019, 7, 24005–24011.

    Article  CAS  Google Scholar 

  35. Hua, X.; Robert, R.; Du, L. S.; Wiaderek, K. M.; Leskes, M.; Chapman, K. W.; Chupas, P. J.; Grey, C. P. Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery. J. Phys. Chem. C 2014, 118, 15169–15184.

    Article  CAS  Google Scholar 

  36. Suslov, E. A.; Bushkova, O. V.; Sherstobitova, E. A.; Reznitskikh, O. G.; Titov, A. N. Lithium intercalation into TiS2 cathode material: Phase equilibria in a Li-TiS2 system. Ionics 2016, 22, 503–514.

    Article  CAS  Google Scholar 

  37. Beleanu, A.; Kiss, J.; Baenitz, M.; Majumder, M.; Senyshyn, A.; Kreiner, G.; Felser, C. LiCuS, an intermediate phase in the electrochemical conversion reaction of CuS with Li: A potential environment-friendly battery and solar cell material. Solid State Sci. 2016, 55, 83–87.

    Article  CAS  Google Scholar 

  38. Soliman, S. Theoretical investigation of Cu-containing materials with different valence structure types: BaCu2S2, Li2CuSb, and LiCuS. J. Phys. Chem. Solids 2014, 75, 927–930.

    Article  CAS  Google Scholar 

  39. McDowell, M. T.; Lu, Z. D.; Koski, K. J.; Yu, J. H.; Zheng, G. Y.; Cui, Y. In situ observation of divergent phase transformations in individual sulfide nanocrystals. Nano Lett. 2015, 15, 1264–1271.

    Article  CAS  Google Scholar 

  40. Morcrette, M.; Rozier, P.; Dupont, L.; Mugnier, E.; Sannier, L.; Galy, J.; Tarascon, J. M. A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Nat. Mater. 2003, 2, 755–761.

    Article  CAS  Google Scholar 

  41. Pauporté, T.; Vedel, J. Temperature effects on copper diffusion in natural chalcocite. Solid State Ionics 1999, 116, 311–320.

    Article  Google Scholar 

  42. Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74–80.

    Article  CAS  Google Scholar 

  43. Lyu, Y.; Wu, X.; Wang, K.; Feng, Z. J.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R. M.; Xu, L. M.; Zhou, J. J. et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2000982.

    Article  CAS  Google Scholar 

  44. Liao, J. Y.; Han, Y.; Zhang, Z. Z.; Xu, J. Y.; Li, J. B.; Zhou, X. S. Recent progress and prospects of layered cathode materials for potassium-ion batteries. Energy Environ. Mater. 2021, 4, 178–200.

    Article  CAS  Google Scholar 

  45. Hua, X.; Allan, P. K.; Gong, C.; Chater, P. A.; Schmidt, E. M.; Geddes, H. S.; Robertson, A. W.; Bruce, P. G.; Goodwin, A. L. Non-equilibrium metal oxides via reconversion chemistry in lithium-ion batteries. Nat. Commun. 2021, 12, 561.

    Article  CAS  Google Scholar 

  46. Zhang, W.; Li, Y.; Wu, L. J.; Duan, Y. D.; Kisslinger, K.; Chen, C. L.; Bock, D. C.; Pan, F.; Zhu, Y. M.; Marschilok, A. C. et al. Multi-electron transfer enabled by topotactic reaction in magnetite. Nat. Commun. 2019, 10, 1972.

    Article  Google Scholar 

  47. Karki, K.; Wu, L. J.; Ma, Y.; Armstrong, M. J.; Holmes, J. D.; Garofalini, S. H.; Zhu, Y. M.; Stach, E. A.; Wang, F. Revisiting conversion reaction mechanisms in lithium batteries: Lithiation-driven topotactic transformation in FeF2. J. Am. Chem. Soc. 2018, 140, 17915–17922.

    Article  CAS  Google Scholar 

  48. Wang, J. L.; He, Y. S.; Yang, J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv. Mater. 2015, 27, 569–575.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52072061) and the Natural Science Foundation of Sichuan, China (No. 2023NSFSC1914).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Wu, Z., Tang, R. et al. Copper diffusion related phase change and voltage decay in CuS cathode. Nano Res. 16, 8497–8503 (2023). https://doi.org/10.1007/s12274-023-5627-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5627-9

Keywords

Navigation