Skip to main content
Log in

Ferroptosis-inducing inorganic arsenic(II) sulfide nanocrystals enhance immune activation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Arsenic(II) sulfide is a stable inorganic arsenic compound with a different valence from arsenic trioxide, and has been widely applied to treat various diseases with low toxic side effects for a long time. However, its low solubility and complicated formulations restrict its further applications in modern medical industry. Meanwhile, as the tumour with the highest incidence rate among women, the low recurrence risk of breast cancer has been confirmed to be closely related to the high infiltration of immune cells. Herein, we synthesized and filtered novel biocompatible PEGylated arsenic(II) sulfide nanocrystals AsS@PEG with a size of 93.14 ± 0.49 nm by the gel method, which displayed excellent anticancer and immune activation activity in breast cancer model. Proteomic analysis suggested that the AsS@PEG induce ferroptosis in cancer cells and further activate antitumour immune responses via B-cell lymphoma 9-like (BCL9L) protein inhibition. Furthermore, mechanism studies revealed notable glutathione peroxidase 4 (GPX4) downregulation in cancer cells, dendritic cells (DCs) maturation and subsequent effector CD8+ T-cells production induced by the AsS@PEG in the tumour microenvironment. This study highlights biocompatible arsenic(II) sulfide nanocrystals that induce ferroptotic cell death and activate antitumour immune responses, providing insights into the path towards the immunotherapy assisted chemotherapy for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. Y.; Chen, Z. Acute promyelocytic leukemia: From highly fatal to highly curable. Blood2008, 111, 2505–2515.

    Article  CAS  Google Scholar 

  2. Quintas-Cardama, A.; Verstovsek, S.; Freireich, E.; Kantarjian, H.; Chen, Y. W.; Zingaro, R. Chemical and clinical development of darinaparsin, a novel organic arsenic derivative. Anti-Cancer Agents Med. Chem.2008, 8, 904–909.

    Article  CAS  Google Scholar 

  3. Lu, D. P.; Qiu, J. Y.; Jiang, B.; Wang, Q.; Liu, K. Y.; Liu, Y. R.; Chen, S. S. Tetra-arsenic tetra-sulfide for the treatment of acute promyelocytic leukemia: A pilot report. Blood2002, 99, 3136–3143.

    Article  CAS  Google Scholar 

  4. Wu, J. Z.; Shao, Y. B.; Liu, J. L.; Chen, G.; Ho, P. C. The medicinal use of realgar (As4S4) and its recent development as an anticancer agent. J. Ethnopharmacol.2011, 135, 595–602.

    Article  CAS  Google Scholar 

  5. Zhu, H. H.; Hu, J.; Lo-Coco, F.; Jin, J. The simpler, the better: Oral arsenic for acute promyelocytic leukemia. Blood2019, 134, 597–605.

    Article  CAS  Google Scholar 

  6. Deng, G.; Cassileth, B. Complementary or alternative medicine in cancer care-myths and realities. Nat. Rev. Clin. Oncol.2013, 10, 656–664.

    Article  Google Scholar 

  7. Wang, X. X.; Hu, Y.; Mo, J. B.; Zhang, J. Y.; Wang, Z. Z.; Wei, W.; Li, H. L.; Xu, Y.; Ma, J.; Zhao, J. et al. Arsenene: A potential therapeutic agent for acute promyelocytic leukaemia cells by acting on nuclear proteins. Angew. Chem., Int. Ed.2020, 59, 5151–5158.

    Article  CAS  Google Scholar 

  8. Kong, N.; Zhang, H. J.; Feng, C.; Liu, C.; Xiao, Y. F.; Zhang, X. C.; Mei, L.; Kim, J. S.; Tao, W.; Ji, X. Y. Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nat. Commun.2021, 12, 4777.

    Article  CAS  Google Scholar 

  9. Liu, C.; Sun, S.; Feng, Q.; Wu, G. W.; Wu, Y. T.; Kong, N.; Yu, Z. S.; Yao, J. L.; Zhang, X. C.; Chen, W. et al. Arsenene nanodots with selective killing effects and their low-dose combination with ß-elemene for cancer therapy. Adv. Mater.2021, 33, 2102054.

    Article  CAS  Google Scholar 

  10. Peng, Y. B.; Zhao, Z. L.; Liu, T.; Li, X.; Hu, X. X.; Wei, X. P.; Zhang, X. B.; Tan, W. H. Smart human-serum-albumin-As2O3 nanodrug with self-amplified folate receptor-targeting ability for chronic myeloid leukemia treatment. Angew. Chem., Int. Ed.2017, 56, 10845–10849.

    Article  CAS  Google Scholar 

  11. Wang, J. Z.; Lin, M.; Zhang, T. Y.; Yan, Y. L.; Ho, P. C.; Xu, Q. H.; Loh, K. P. Arsenic(II) sulfide quantum dots prepared by a wet process from its bulk. J. Am. Chem. Soc.2008, 130, 11596–11597.

    Article  CAS  Google Scholar 

  12. Wang, J. Z.; Loh, K. P.; Wang, Z.; Yan, Y. L.; Zhong, Y. L.; Xu, Q. H.; Ho, P. C. Fluorescent nanogel of arsenic sulfide nanoclusters. Angew. Chem., Int. Ed.2009, 48, 6282–6285.

    Article  CAS  Google Scholar 

  13. Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA:Cancer J. Clin.2021, 71, 209–249.

    Google Scholar 

  14. Bianchini, G.; Balko, J. M.; Mayer, I. A.; Sanders, M. E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol.2016, 13, 674–690.

    Article  CAS  Google Scholar 

  15. Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers.2011, 5, 66.

    Article  Google Scholar 

  16. Ye, Y. S.; Ricard, L.; Siblany, L.; Stocker, N.; De Vassoigne, F.; Brissot, E.; Lamarthée, B.; Mekinian, A.; Mohty, M.; Gaugler, B. et al. Arsenic trioxide induces regulatory functions of plasmacytoid dendritic cells through interferon-α inhibition. Acta Pharm. Sin. B2020, 10, 1061–1072.

    Article  CAS  Google Scholar 

  17. Trumpp, A.; Essers, M.; Wilson, A. Awakening dormant haematopoietic stem cells. Nat. Rev. Immunol.2010, 10, 201–209.

    Article  CAS  Google Scholar 

  18. Bobé, P.; Bonardelle, D.; Benihoud, K.; Opolon, P.; Chelbi-Alix, M. K. Arsenic trioxide: A promising novel therapeutic agent for lymphoproliferative and autoimmune syndromes in MRL/lpr mice. Blood2006, 108, 3967–3975.

    Article  Google Scholar 

  19. Wang, L.; Wang, R.; Fan, L.; Liang, W. T.; Liang, K.; Xu, Y. X.; Peng, G. Z.; Ye, Q. F. Arsenic trioxide is an immune adjuvant in liver cancer treatment. Mol. Immunol.2017, 81, 118–126.

    Article  CAS  Google Scholar 

  20. Abermann, R.; Bahl, C. P.; Marians, K. J.; Salpeter, M. M.; Wu, R. Studies on the lactose operon: III. Visualization and physical mapping of the lactose repressor-operator complex. J. Mol. Biol.1976, 100, 109–114.

    Article  CAS  Google Scholar 

  21. Wagner, C. D.; Passoja, D. E.; Hillery, H. F.; Kinisky, T. G.; Six, H. A.; Jansen, W. T.; Taylor, J. A. Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds. J. Vac. Sci. Technol.1982, 21, 933–944.

    Article  CAS  Google Scholar 

  22. Lentz, B. R. PEG as a tool to gain insight into membrane fusion. Eur. Biophys. J.2007, 36, 315–326.

    Article  CAS  Google Scholar 

  23. Qiu, Y.; Liu, Y.; Wang, L. M.; Xu, L. G.; Bai, R.; Ji, Y. L.; Wu, X. C.; Zhao, Y. L.; Li, Y. F.; Chen, C. Y. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials2010, 31, 7606–7619.

    Article  CAS  Google Scholar 

  24. Lai, S. C.; Chen, Y.; Yang, F.; Xiao, W. D.; Liu, Y.; Wang, C. Quantitative site-specific chemoproteomic profiling of protein lipoylation. J. Am. Chem. Soc.2022, 144, 10320–10329.

    Article  CAS  Google Scholar 

  25. Yang, W. S.; Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol.2008, 15, 234–245.

    Article  CAS  Google Scholar 

  26. Yang, W. S.; SriRamaratnam, R.; Welsch, M. E.; Shimada, K.; Skouta, R.; Viswanathan, V. S.; Cheah, J. H.; Clemons, P. A.; Shamji, A. F.; Clish, C. B. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell2014, 156, 317–331.

    Article  CAS  Google Scholar 

  27. Sampietro, J.; Dahlberg, C. L.; Cho, U. S.; Hinds, T. R.; Kimelman, D.; Xu, W. Q. Crystal structure of a β-catenin/BCL9/Tcf4 complex. Mol. Cell2006, 24, 293–300.

    Article  CAS  Google Scholar 

  28. Spranger, S.; Bao, R. Y.; Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature2015, 523, 231–235.

    Article  CAS  Google Scholar 

  29. Feng, M.; Wu, Z. E.; Zhou, Y.; Wei, Z.; Tian, E. M.; Mei, S. L.; Zhu, Y. Y.; Liu, C. L.; He, F. L.; Li, H. Y. et al. BCL9 regulates CD226 and CD96 checkpoints in CD8+ T cells to improve PD-1 response in cancer. Signal Transduct. Target. Ther.2021, 6, 313.

    Article  CAS  Google Scholar 

  30. Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol.2013, 31, 51–72.

    Article  CAS  Google Scholar 

  31. Chen, B. M.; Cheng, T. L.; Roffler, S. R. Polyethylene glycol immunogenicity: Theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies. ACS Nano2021, 15, 14022–14048.

    Article  CAS  Google Scholar 

  32. Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J. Y.; Afonin, K. A.; Dobrovolskaia, M. A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug. Deliv. Rev.2022, 180, 114079.

    Article  CAS  Google Scholar 

  33. Chen, C.; Wang, Z. Y.; Jia, S. R.; Zhang, Y.; Ji, S. L.; Zhao, Z.; Kwok, R. T. K.; Lam, J. W. Y.; Ding, D.; Shi, Y. et al. Evoking highly immunogenic ferroptosis aided by intramolecular motion-induced photo-hyperthermia for cancer therapy. Adv. Sci.2022, 9, 2104885.

    Article  CAS  Google Scholar 

  34. Zhou, Z. W.; Liang, H.; Yang, R. X.; Yang, Y.; Dong, J. W.; Di, Y. X.; Sun, M. J. Glutathione depletion-induced activation of dimersomes for potentiating the ferroptosis and immunotherapy of “Cold” tumor. Angew. Chem., Int. Ed.2022, 61, e202202843.

    Article  CAS  Google Scholar 

  35. Song, R. D.; Li, T. L.; Ye, J. Y.; Sun, F.; Hou, B.; Saeed, M.; Gao, J.; Wang, Y. J.; Zhu, Q. W.; Xu, Z. A. et al. Acidity-activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer. Adv. Mater.2021, 33, 2101155.

    Article  CAS  Google Scholar 

  36. Jiang, Q.; Wang, K.; Zhang, X. Y.; Ouyang, B. S.; Liu, H. X.; Pang, Z. Q.; Yang, W. L. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small2020, 16, 2001704.

    Article  CAS  Google Scholar 

  37. Wang, W. J.; Ling, Y. Y.; Zhong, Y. M.; Li, Z. Y.; Tan, C. P.; Mao, Z. W. Ferroptosis-enhanced cancer immunity by a ferrocene-appended iridium(III) diphosphine complex. Angew. Chem., Int. Ed.2022, 61, e202115247.

    Article  CAS  Google Scholar 

  38. Wang, L.; Zhou, G. B.; Liu, P.; Song, J. H.; Liang, Y.; Yan, X. J.; Xu, F.; Wang, B. S.; Mao, J. H.; Shen, Z. X. et al. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc. Natl. Acad. Sci. USA2008, 105, 4826–4831.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22207053, 91753121, 21872069, 51761135104, 21731004 and 91953201), the Shenzhen Basic Research Program (Nos. JCYJ20170413150538897 and JCYJ20180508182240106), the National Key R&D Program of China (Nos. 2017YFA0208200, 2016YFB0700600 and 2015CB659300), the Natural Science Foundation of Jiangsu Province (Nos. BK20220764, BK20180008 and BK20202004), The Fundamental Research Funds for the Central Universities, 2021 Strategic Research Project of the Science and Technology Commission of the Ministry of Education of China. We thank Shanghai Applied Protein Technology Co., Ltd., and OE Biotech Co., Ltd. (Shanghai, China) for providing technological assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wei, Xiuxiu Wang or Jing Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Qin, Y., Wang, Z. et al. Ferroptosis-inducing inorganic arsenic(II) sulfide nanocrystals enhance immune activation. Nano Res. 16, 9760–9767 (2023). https://doi.org/10.1007/s12274-023-5617-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5617-y

Keywords

Navigation