Skip to main content
Log in

Optimizing electronic structure of NiFe LDH with Mn-doping and Fe0.64Ni0.36 alloy for alkaline water oxidation under industrial current density

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Alkaline electrolyzers for water splitting under the industrial current densities are always burdened with huge energy consumption due to the high overpotential and poor stability of the anode nanocatalysts for oxygen evolution reaction (OER). Inspired by the interfacial charge transfer for enhancing the performance, a series of in-situ grown interfacial Mn-NiFe lactate dehydrogenase (LDH) was designed on the Fe0.64Ni0.36/NM (nickel mesh) alloy layer. The optimized Mn0.15-NiFe LDH/Fe0.64Ni0.36/NM exhibited an ultralow overpotential of 295 mV to drive 500 mA·cm−2 and an incredible stability under large current density. The interfacial space and heteroatom doping synergistically triggered the electronic structure optimization to promote electron transfer and ensure the durability of the high-current reaction. Notably, the designed Mn0.15-NiFe LDH/Fe0.64Ni0.36/NM as an anode in an integral alkaline electrolyzer exhibited a cell voltage of 1.78 V at 500 mA·cm−2 with a stability of 366 h. Density functional theory (DFT) calculations further demonstrated the synergistic effect of alloy layer introduction and Mn doping could accelerate electron transfer and stabilize the charged active center to activate the NiFe LDH and reduce the OER energy barrier. Our work offers new insights into developing efficient self-supported catalysts for high-current alkaline water oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, X. Y.; Zhu, Y. R.; Chen, Y.; Dou, S. Y.; Chen, X. Y.; Dong, B.; Guo, B. Y.; Liu, D. P.; Liu, C. G.; Chai, Y. M. Hydrogen evolution under large-current-density based on fluorine-doped cobalt-iron phosphides. Chem. Eng. J. 2020, 399, 125831.

    CAS  Google Scholar 

  2. Staffell, I.; Scamman, D.; Abad, A. V.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491.

    CAS  Google Scholar 

  3. Fan, R. Y.; Xie, J. Y.; Liu, H. J.; Wang, H. Y.; Li, M. X.; Yu, N.; Luan, R. N.; Chai, Y. M.; Dong, B. Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction. Chem. Eng. J. 2022, 431, 134040.

    CAS  Google Scholar 

  4. Garcés-Pineda, F. A.; Blasco-Ahicart, M.; Nieto-Castro, D.; López, N.; Galán-Mascarós, J. R. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 2009, 4, 519–525.

    Google Scholar 

  5. An, C. H.; Kang, W.; Deng, Q. B.; Hu, N. Pt and Te codoped ultrathin MoS2 nanosheets for enhanced hydrogen evolution reaction with wide pH range. Rare Met. 2022, 41, 378–384.

    CAS  Google Scholar 

  6. Hao, R.; Feng, Q. L.; Wang, X. J.; Zhang, Y. C.; Li, K. S. Morphology-controlled growth of large-area PtSe2 films for enhanced hydrogen evolution reaction. Rare Met. 2022, 41, 1314–1322.

    CAS  Google Scholar 

  7. Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 2020, 10, 1900954.

    CAS  Google Scholar 

  8. Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.

    CAS  Google Scholar 

  9. Liu, C.; Qian, J.; Ye, Y. F.; Zhou, H.; Sun, C. J.; Sheehan, C.; Zhang, Z. Y.; Wan, G.; Liu, Y. S.; Guo, J. H. et al. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 2021, 4, 36–45.

    CAS  Google Scholar 

  10. Sun, W.; Zhou, Z. H.; Zaman, W. Q.; Cao, L. M.; Yang, J. Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst. ACS Appl. Mater. Interfaces 2017, 9, 41855–41862.

    CAS  Google Scholar 

  11. Zhang, L. J.; Jang, H.; Liu, H. H.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 18821–18829.

    CAS  Google Scholar 

  12. Chang, J. W.; Song, X. D.; Yu, C.; Yu, J. H.; Ding, Y. W.; Yao, C.; Zhao, Z. B.; Qiu, J. S. Hydrogen-bonding triggered assembly to configure hollow carbon nanosheets for highly efficient tri-iodide reduction. Adv. Funct. Mater. 2020, 30, 2006270.

    CAS  Google Scholar 

  13. Zhang, J. T.; Yu, L.; Chen, Y.; Lu, X. F.; Gao, S. Y.; Lou, X. W. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Adv. Mater. 2020, 32, 1906432.

    CAS  Google Scholar 

  14. Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv. Energy Mater. 2019, 9, 1803358.

    Google Scholar 

  15. Feng, X. T.; Jiao, Q. Z.; Chen, W. X.; Dang, Y. L.; Dai, Z.; Suib, S. L.; Zhang, J. T.; Zhao, Y.; Li, H. S.; Feng, C. H. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B:Environ. 2021, 286, 119869.

    CAS  Google Scholar 

  16. Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 2019, 31, 1903909.

    CAS  Google Scholar 

  17. Hu, C. L.; Zhang, L.; Zhao, Z. J.; Li, A.; Chang, X. X.; Gong, J. L. Synergism of geometric construction and electronic regulation: 3D Se-(NiCo)Sx/(OH)x nanosheets for highly efficient overall water splitting. Adv. Mater. 2018, 30, 1705538.

    Google Scholar 

  18. Du, X. C.; Huang, J. W.; Zhang, J. J.; Yan, Y. C.; Wu, C. Y.; Hu, Y.; Yan, C. Y.; Lei, T. Y.; Chen, W.; Fan, C. et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 4484–4502.

    CAS  Google Scholar 

  19. Gu, M. Z.; Deng, X. Y.; Lin, M.; Wang, H.; Gao, A.; Huang, X. M.; Zhang, X. J. Ultrathin NiCo bimetallic molybdate nanosheets coated CuOx nanotubes: Heterostructure and bimetallic synergistic optimization of the active site for highly efficient overall water splitting. Adv. Energy Mater. 2021, 11, 2102361.

    CAS  Google Scholar 

  20. Gao, X. R.; Li, X.; Yu, Y.; Kou, Z. K.; Wang, P. Y.; Liu, X. M.; Zhang, J.; He, J. Q.; Mu, S. C.; Wang, J. Synergizing aliovalent doping and interface in heterostructured NiV nitride@oxyhydroxide core-shell nanosheet arrays enables efficient oxygen evolution. Nano Energy 2021, 85, 105961.

    CAS  Google Scholar 

  21. Hu, J.; Al-Salihy, A.; Wang, J.; Li, X.; Fu, Y. F.; Li, Z. H.; Han, X. J.; Song, B.; Xu, P. Improved interface charge transfer and redistribution in CuO−CoOOH p-n heterojunction nanoarray electrocatalyst for enhanced oxygen evolution reaction. Adv. Sci. 2020, 8, 2103314.

    Google Scholar 

  22. Xue, Z. Q.; Li, X.; Liu, Q. L.; Cai, M. K.; Liu, K.; Liu, M.; Ke, Z. F.; Liu, X. L.; Li, G. Q. Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1900430.

    Google Scholar 

  23. Xiang, Q.; Li, F.; Chen, W. L.; Ma, Y. L.; Wu, Y.; Gu, X.; Qin, Y.; Tao, P.; Song, C. Y.; Shang, W. et al. In situ vertical growth of Fe−Ni layered double-hydroxide arrays on Fe−Ni alloy foil: Interfacial layer enhanced electrocatalyst with small overpotential for oxygen evolution reaction. ACS Energy Lett. 2018, 3, 2357–2365.

    CAS  Google Scholar 

  24. Zheng, Z. C.; Guo, Y. R.; Wan, H.; Chen, G.; Zhang, N.; Ma, W.; Liu, X. H.; Liang, S. Q.; Ma, R. Z. Anchoring active sites by Pt2FeNi alloy nanoparticles on NiFe layered double hydroxides for efficient electrocatalytic oxygen evolution reaction. Energy Environ. Mater. 2022, 5, 270–277.

    CAS  Google Scholar 

  25. Lim, W. Y.; Wu, H.; Lim, Y. F.; Ho, G. W. Facilitating the charge transfer of ZnMoS4/CuS p-n heterojunctions through ZnO intercalation for efficient photocatalytic hydrogen generation. J. Mater. Chem. A 2018, 6, 11416–11423.

    CAS  Google Scholar 

  26. Li, M.; Li, H.; Jiang, X. C.; Jiang, M. Q.; Zhan, X.; Fu, G. T.; Lee, J. M.; Tang, Y. W. Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution. J. Mater. Chem. A 2021, 9, 2999–3006.

    CAS  Google Scholar 

  27. Zeng, Z. P.; Gan, L. Y.; Yang, H. B.; Su, X. Z.; Gao, J. J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J. M.; Cai, W. Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 2021, 12, 4088.

    CAS  Google Scholar 

  28. Chang, J. W.; Yu, C.; Song, X. D.; Tan, X. Y.; Ding, Y. W.; Zhao, Z. B.; Qiu, J. S. A C-S-C linkage-triggered ultrahigh nitrogen-doped carbon and the identification of active site in triiodide reduction. Angew. Chem., Int. Ed. 2021, 60, 3587–3595.

    CAS  Google Scholar 

  29. Bi, Y. M.; Cai, Z.; Zhou, D. J.; Tian, Y.; Zhang, Q.; Zhang, Q.; Kuang, Y.; Li, Y. P.; Sun, X. M.; Duan, X. Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction. J. Catal. 2018, 358, 100–107.

    CAS  Google Scholar 

  30. Luo, X.; Ji, P. X.; Wang, P. Y.; Cheng, R. L.; Chen, D.; Lin, C.; Zhang, J. A.; He, J. W.; Shi, Z. H.; Li, N. et al. Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 2020, 10, 1903891.

    CAS  Google Scholar 

  31. Liu, Y.; Bai, L.; Li, T.; Huo, J. H.; Wang, X. F.; Zhang, L. F.; Hao, X. D.; Guo, S. W. Mn-doping tuned electron configuration and oxygen vacancies in NiO nanoparticles for stable electrocatalytic oxygen evolution reaction. Appl. Surf. Sci. 2022, 577, 151952.

    CAS  Google Scholar 

  32. Rao, R. R.; Corby, S.; Bucci, A.; García-Tecedor, M.; Mesa, C. A.; Rossmeisl, J.; Giménez, S.; Lloret-Fillol, J.; Stephens, I. E. L.; Durrant, J. R. Spectroelectrochemical analysis of the water oxidation mechanism on doped nickel oxides. J. Am. Chem. Soc. 2022, 144, 7622–7633.

    CAS  Google Scholar 

  33. Zhang, Y.; Cheng, C. Q.; Kuai, C. G.; Sokaras, D.; Zheng, X. L.; Sainio, S.; Lin, F.; Dong, C. K.; Nordlund, D.; Du, X. W. Unveiling the critical role of the Mn dopant in a NiFe(OH)2 catalyst for water oxidation. J. Mater. Chem. A 2020, 8, 17471–17476.

    CAS  Google Scholar 

  34. Lu, Z. Y.; Qian, L.; Tian, Y.; Li, Y. P.; Sun, X. M.; Duan, X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chem. Commun. 2016, 52, 908–911.

    CAS  Google Scholar 

  35. Liu, Y. P.; Liang, X.; Gu, L.; Zhang, Y.; Li, G. D.; Zou, X. X.; Chen, J. S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat. Commun. 2018, 9, 2609.

    Google Scholar 

  36. Wang, P. C.; Wan, L.; Lin, Y. Q.; Wang, B. G. NiFe hydroxide supported on hierarchically porous nickel mesh as a high-performance bifunctional electrocatalyst for water splitting at large current density. ChemSusChem 2019, 12, 4038–4045.

    CAS  Google Scholar 

  37. Wu, Y. T.; Wang, H.; Ji, S.; Tian, X. L.; Li, G. D.; Wang, X. Y.; Wang, R. F. Ultrastable NiFeOOH/NiFe/Ni electrocatalysts prepared by in-situ electro-oxidation for oxygen evolution reaction at large current density. Appl. Surf. Sci. 2021, 564, 150440.

    CAS  Google Scholar 

  38. Xiong, X. L.; You, C.; Liu, Z.; Asiri, A. M.; Sun, X. P. Co-doped CuO nanoarray: An efficient oxygen evolution reaction electrocatalyst with enhanced activity. ACS Sustain. Chem. Eng. 2018, 6, 2883–2887.

    CAS  Google Scholar 

  39. Yu, M.; Liu, R. L.; Liu, J. H.; Li, S. M.; Ma, Y. X. Polyhedral-like NiMn-layered double hydroxide/porous carbon as electrode for enhanced electrochemical performance supercapacitors. Small 2017, 13, 1702616.

    Google Scholar 

  40. Cao, Y.; Nyborg, L.; Jelvestam, U. XPS calibration study of thin-film nickel silicides. Surf. Interface Anal. 2009, 41, 471–483.

    CAS  Google Scholar 

  41. Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.

    CAS  Google Scholar 

  42. Dutta, S.; Indra, A.; Feng, Y.; Song, T.; Paik, U. Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity. ACS Appl. Mater. Interfaces 2017, 9, 33766–33774.

    CAS  Google Scholar 

  43. Qiu, Z.; Tai, C. W.; Niklasson, G. A.; Edvinsson, T. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 2019, 12, 572–581.

    CAS  Google Scholar 

  44. Jiang, J.; Sun, F. F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J. C.; Jiang, Z.; Zhao, J. J.; Li, J. F.; Yan, W. S. et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885.

    Google Scholar 

  45. Ye, Z. G.; Li, T.; Ma, G.; Dong, Y. H.; Zhou, X. L. Metal-ion (Fe, V, Co, and Ni)-doped MnO2 ultrathin nanosheets supported on carbon fiber paper for the oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1704083.

    Google Scholar 

  46. Du, S. C.; Ren, Z. Y.; Wang, X. L.; Wu, J.; Meng, H. Y.; Fu, H. G. Controlled atmosphere corrosion engineering toward inhomogeneous NiFe-LDH for energetic oxygen evolution. ACS Nano 2022, 16, 7794–7803.

    CAS  Google Scholar 

  47. Wang, X. Y.; Tuo, Y. X.; Zhou, Y.; Wang, D.; Wang, S. T.; Zhang, J. Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chem. Eng. J. 2021, 403, 126297.

    CAS  Google Scholar 

  48. Yu, F. F.; Bo, S. W.; Zhang, X. X.; Su, H.; Liu, M. H.; Zhou, W. L.; Sun, X.; Xu, Y. Z.; Zhang, H.; Yu, F. et al. Valence-modified selenospinels as ampere-current-bearing oxygen evolution catalysts. Appl. Catal. B:Environ. 2022, 316, 121649.

    CAS  Google Scholar 

  49. Zhuang, L. H.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

    Google Scholar 

  50. Zhou, P.; Lv, X. S.; Xing, D. N.; Ma, F. H.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Dai, Y.; Huang, B. B. High-efficient electrocatalytic overall water splitting over vanadium doped hexagonal Ni0.2Mo0.8N. Appl. Catal. B:Environ. 2020, 263, 118330.

    CAS  Google Scholar 

  51. Chen, D.; Pu, Z. H.; Lu, R. H.; Ji, P. X.; Wang, P. Y.; Zhu, J. W.; Lin, C.; Li, H. W.; Zhou, X. G.; Hu, Z. Y. et al. Ultralow Ru loading transition metal phosphides as high-efficient bifunctional electrocatalyst for a solar-to-hydrogen generation system. Adv. Energy Mater. 2020, 10, 2000814.

    CAS  Google Scholar 

  52. Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759.

    CAS  Google Scholar 

  53. Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Three-dimentional porous nano-Ni/Co(OH)2 nanoflake composite film: A pseudocapacitive material with superior performance. J. Phys. Chem. C 2011, 115, 22662–22668.

    CAS  Google Scholar 

  54. Mohammed-Ibrahim, J. A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. J. Power Sources 2020, 448, 227375.

    CAS  Google Scholar 

  55. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    CAS  Google Scholar 

  56. Chang, J. W.; Yu, C.; Song, X. D.; Han, X. T.; Ding, Y. W.; Tan, X. Y.; Li, S. F.; Xie, Y. Y.; Zhao, Z. B.; Qiu, J. S. Mechanochemistry-driven prelinking enables ultrahigh nitrogen-doping in carbon materials for triiodide reduction. Nano Energy 2021, 89, 106332.

    CAS  Google Scholar 

  57. Sun, S. F.; Zhou, X.; Cong, B. W.; Hong, W. Z.; Chen, G. Tailoring the d-band centers endows (NixFe1−x)2P nanosheets with efficient oxygen evolution catalysis. ACS Catal. 2020, 10, 9086–9097.

    CAS  Google Scholar 

  58. Wang, Z. P.; Shen, S. J.; Lin, Z. P.; Tao, W. Y.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Regulating the local spin state and band structure in Ni3S2 nanosheet for improved oxygen evolution activity. Adv. Funct. Mater. 2022, 32, 2112832.

    CAS  Google Scholar 

  59. Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Central University Basic Research Fund of China (No. 226-2022-00055), the National Key Research and Development Program of China (No. 2019YFC1805602), the Zhejiang Provincial Natural Science Foundation of China (No. LZ22B060003) together with the Major Scientific Project of Zhejiang Lab (No. 2020MC0AD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwang Zhang.

Electronic Supplementary Material

12274_2023_5615_MOESM1_ESM.pdf

Optimizing electronic structure of NiFe LDH with Mn-doping and Fe0.64Ni0.36 alloy for alkaline water oxidation under industrial current density

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Zhang, F., Qiu, L. et al. Optimizing electronic structure of NiFe LDH with Mn-doping and Fe0.64Ni0.36 alloy for alkaline water oxidation under industrial current density. Nano Res. 16, 8953–8960 (2023). https://doi.org/10.1007/s12274-023-5615-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5615-0

Keywords

Navigation