Skip to main content
Log in

Efficient and stable perovskite solar cells by build-in π-columns and ionic interfaces in covalent organic frameworks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 08 November 2023

This article has been updated

Abstract

Perovskite solar cells (PSCs) have attracted much attention due to their rapidly increased power conversion efficiencies, however, their inherent poor long-term stability hinders their commercialization. The degradation of PSCs first comes from the degradation of hole transport materials (HTMs). Here, we report the construction of periodic π-columnar arrays and ionic interfaces over the skeletons by introducing cationic covalent organic frameworks (C-COFs) to the HTM. Periodic π-columnar arrays can optimize the charge transport ability and energy levels of the hole transport layer and suppress the degradation of HTM, and ionic interfaces over the skeletons can produce stronger electric dipole and electrostatic interactions, as well as higher charge densities. The C-COFs were designed and synthesized via Schiff base reaction by using 1,3,5-triformylphloroglucinol as a neutral knot and dimidium bromide as cationic linker. The neutral COFs (N-COFs) were also synthesized as a reference by using 3,8-diamino-6-phenylphenanthridine as neutral linker. PSCs with cationic COF exhibit the highest efficiency of 23.4% with excellent humidity and thermal stability. To the best of our knowledge, this is the highest efficiency among the meso-structured PSCs fabricated by a sequential process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    CAS  Google Scholar 

  2. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

    Google Scholar 

  3. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.

    CAS  Google Scholar 

  4. Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

    CAS  Google Scholar 

  5. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

    CAS  Google Scholar 

  6. Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379.

    CAS  Google Scholar 

  7. Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

    CAS  Google Scholar 

  8. Jeong, M.; Choi, I. W.; Go, E. M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H. W.; Lee, J. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620.

    CAS  Google Scholar 

  9. Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y. L.; Rotermund, F.; Kim, Y. K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J. P. et al. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590, 587–593.

    CAS  Google Scholar 

  10. Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.

    CAS  Google Scholar 

  11. NREL. Best research cell efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf. (accessed November 6, 2022).

  12. Chen, J. Z.; Park, N. G. Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 2019, 31, 1803019.

    CAS  Google Scholar 

  13. Zhang, J. D.; Guo, S. S.; Zhu, M. Q.; Li, C.; Chen, J. G.; Liu, L. Z.; Xiang, S. C.; Zhang, Z. J. Simultaneous defect passivation and hole mobility enhancement of perovskite solar cells by incorporating anionic metal-organic framework into hole transport materials. Chem. Eng. J. 2021, 408, 127328.

    CAS  Google Scholar 

  14. Luo, J. S.; Xia, J. X.; Yang, H.; Chen, L. L.; Wan, Z. Q.; Han, F.; Malik, H. A.; Zhu, X. H.; Jia, C. Y. Toward high-efficiency, hysteresis-less, stable perovskite solar cells: Unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid. Energy Environ. Sci. 2018, 11, 2035–2045.

    CAS  Google Scholar 

  15. Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T. Y.; Noh, J. H.; Seo, J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567, 511–515.

    CAS  Google Scholar 

  16. Lou, Q.; Li, H. L.; Huang, Q. S.; Shen, Z. T.; Li, F. M.; Du, Q.; Jin, M. Q.; Chen, C. Multifunctional CNT:TiO2 additives in spiro-OMeTAD layer for highly efficient and stable perovskite solar cells. EcoMat 2021, 3, e12099.

    CAS  Google Scholar 

  17. Ye, S. Y.; Rao, H. X.; Yan, W. B.; Li, Y. L.; Sun, W. H.; Peng, H. T.; Liu, Z. W.; Bian, Z. Q.; Li, Y. F.; Huang, C. H. A strategy to simplify the preparation process of perovskite solar cells by co-deposition of a hole-conductor and a perovskite layer. Adv. Mater. 2016, 28, 9648–9654.

    CAS  Google Scholar 

  18. Chen, C.; Li, C. X.; Li, F. M.; Wu, F.; Tan, F. R.; Zhai, Y.; Zhang, W. F. Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions. Nanoscale Res. Lett. 2014, 9, 457.

    CAS  Google Scholar 

  19. Liu, G. L.; Liu, L.; Niu, X. X.; Zhou, H. P.; Chen, Q. Effects of iodine doping on carrier behavior at the interface of perovskite crystals: Efficiency and stability. Crystals 2018, 8, 185.

    Google Scholar 

  20. Wang, S.; Huang, Z. H.; Wang, X. F.; Li, Y. M.; Günther, M.; Valenzuela, S.; Parikh, P.; Cabreros, A.; Xiong, W.; Meng, Y. S. Unveiling the role of tBP-LiTFSI complexes in perovskite solar cells. J. Am. Chem. Soc. 2018, 140, 16720–16730.

    CAS  Google Scholar 

  21. Wang, S.; Sina, M.; Parikh, P.; Uekert, T.; Shahbazian, B.; Devaraj, A.; Meng, Y. S. Role of 4-tert-butylpyridine as a hole transport layer morphological controller in perovskite solar cells. Nano Lett. 2016, 16, 5594–5600.

    CAS  Google Scholar 

  22. Lou, Q.; Lou, G.; Guo, H. L.; Sun, T.; Wang, C. Y.; Chai, G. D.; Chen, X.; Yang, G. S.; Guo, Y. Z.; Zhou, H. Enhanced efficiency and stability of n-i-p perovskite solar cells by incorporation of fluorinated graphene in the spiro-OMeTAD hole transport layer. Adv. Energy Mater. 2022, 12, 2201344.

    CAS  Google Scholar 

  23. Zhao, X. M.; Zhang, F.; Yi, C. Y.; Bi, D. Q.; Bi, X. D.; Wei, P.; Luo, J. S.; Liu, X. C.; Wang, S. R.; Li, X. G. et al. A novel one-step synthesized and dopant-free hole transport material for efficient and stable perovskite solar cells. J. Mater. Chem. A 2016, 4, 16330–16334.

    CAS  Google Scholar 

  24. Lee, I.; Yun, J. H.; Son, H. J.; Kim, T. S. Accelerated degradation due to weakened adhesion from Li-TFSI additives in perovskite solar cells. ACS Appl. Mater. Interfaces 2017, 9, 7029–7035.

    CAS  Google Scholar 

  25. Yang, K.; Liao, Q. G.; Huang, J.; Zhang, Z. L.; Su, M. Y.; Chen, Z. C.; Wu, Z. A.; Wang, D.; Lai, Z. W.; Woo, H. Y. et al. Intramolecular noncovalent interaction-enabled dopant-free hole-transporting materials for high-performance inverted perovskite solar cells. Angew. Chem., Int. Ed. 2022, 61, e202113749.

    CAS  Google Scholar 

  26. You, G. F.; Li, L. H.; Wang, S. Q.; Cao, J. B.; Yao, L.; Cai, W. Z.; Zhou, Z. G.; Li, K.; Lin, Z. H.; Zhen, H. Y. et al. Donor—acceptor type polymer bearing carbazole side chain for efficient dopant-free perovskite solar cells. Adv. Energy Mater. 2021, 12, 2102697.

    Google Scholar 

  27. Ullah, A.; Park, K. H.; Nguyen, H. D.; Siddique, Y.; Shah, S. F. A.; Tran, H.; Park, S.; Lee, S. I.; Lee, K. K.; Han, C. H. et al. Novel phenothiazine-based self-assembled monolayer as a hole selective contact for highly efficient and stable p-i-n perovskite solar cells. Adv. Energy Mater. 2022, 12, 2103175.

    CAS  Google Scholar 

  28. Waller, P. J.; Gándara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053–3063.

    CAS  Google Scholar 

  29. Wang, H.; Wang, H.; Wang, Z. W.; Tang, L.; Zeng, G. M.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C. Y.; Li, X. Y. et al. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165.

    CAS  Google Scholar 

  30. Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

    CAS  Google Scholar 

  31. Li, Y. S.; Chen, W. B.; Xing, G. L.; Jiang, D. L.; Chen, L. New synthetic strategies toward covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 2852–2868.

    CAS  Google Scholar 

  32. Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

    CAS  Google Scholar 

  33. Zhang, T. Y.; Gregoriou, V. G.; Gasparini, N.; Chochos, C. L. Porous organic polymers in solar cells. Chem. Soc. Rev. 2022, 51, 4465–4483.

    CAS  Google Scholar 

  34. Li, Z. P.; Geng, K. Y.; He, T.; Tan, K. T.; Huang, N.; Jiang, Q. H.; Nagao, Y.; Jiang, D. L. Editing light emission with stable crystalline covalent organic frameworks via wall surface perturbation. Angew. Chem., Int. Ed. 2021, 60, 19419–19427.

    CAS  Google Scholar 

  35. Ma, H. P.; Liu, B. L.; Li, B.; Zhang, L. M.; Li, Y. G.; Tan, H. Q.; Zang, H. Y.; Zhu, G. S. Cationic covalent organic frameworks: A simple platform of anionic exchange for porosity tuning and proton conduction. J. Am. Chem. Soc. 2016, 138, 5897–5903.

    CAS  Google Scholar 

  36. Mi, Z.; Yang, P.; Wang, R.; Unruangsri, J.; Yang, W. L.; Wang, C. C.; Guo, J. Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion. J. Am. Chem. Soc. 2019, 141, 14433–14442.

    CAS  Google Scholar 

  37. Wang, H.; Qian, C.; Liu, J.; Zeng, Y. F.; Wang, D. D.; Zhou, W. Q.; Gu, L.; Wu, H. W.; Liu, G. F.; Zhao, Y. L. Integrating suitable linkage of covalent organic frameworks into covalently bridged inorganic/organic hybrids toward efficient photocatalysis. J. Am. Chem. Soc. 2020, 142, 4862–4871.

    CAS  Google Scholar 

  38. She, P. F.; Qin, Y. Y.; Wang, X.; Zhang, Q. C. Recent progress in external-stimulus-responsive 2D covalent organic frameworks. Adv. Mater. 2022, 34, 2101175.

    CAS  Google Scholar 

  39. Liang, R. R.; Jiang, S. Y.; A, R. H.; Zhao, X. Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 2020, 49, 3920–3951.

    CAS  Google Scholar 

  40. Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604.

    CAS  Google Scholar 

  41. Yu, F.; Liu, W. B.; Ke, S. W.; Kurmoo, M.; Zuo, J. L.; Zhang, Q. C. Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat. Commun. 2020, 11, 5534.

    CAS  Google Scholar 

  42. Segura, J. L.; Mancheno, M. J.; Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: Synthesis, properties and potential applications. Chem. Soc. Rev. 2016, 45, 5635–5671.

    CAS  Google Scholar 

  43. Zhao, J. W.; Ren, J. Y.; Zhang, G.; Zhao, Z. Q.; Liu, S. Y.; Zhang, W. D.; Chen, L. Donor—acceptor type covalent organic frameworks. Chemistry 2021, 27, 10781–10797.

    CAS  Google Scholar 

  44. Xu, S. Q.; Sun, H. J.; Addicoat, M.; Biswal, B. P.; He, F.; Park, S.; Paasch, S.; Zhang, T.; Sheng, W. B.; Brunner, E. et al. Thiophene-bridged donor—acceptor sp2-carbon-linked 2D conjugated polymers as photocathodes for water reduction. Adv. Mater. 2021, 33, 2006274.

    CAS  Google Scholar 

  45. Wu, C. Y.; Liu, Y. M.; Liu, H.; Duan, C. H.; Pan, Q. Y.; Zhu, J.; Hu, F.; Ma, X. Y.; Jiu, T.; Li, Z. B. et al. Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement. J. Am. Chem. Soc. 2018, 140, 10016–10024.

    CAS  Google Scholar 

  46. Li, Z. P.; Zhang, Z. W.; Nie, R. M.; Li, C. Z.; Sun, Q. K.; Shi, W.; Chu, W. C.; Long, Y. Y.; Li, H.; Liu, X. M. Construction of stable donor—acceptor type covalent organic frameworks as functional platform for effective perovskite solar cell enhancement. Adv. Funct. Mater. 2022, 32, 2112553.

    CAS  Google Scholar 

  47. He, J.; Liu, H. L.; Zhang, F.; Li, X. G.; Wang, S. R. In situ synthesized 2D covalent organic framework nanosheets induce growth of high-quality perovskite film for efficient and stable solar cells. Adv. Funct. Mater. 2022, 32, 2110030.

    CAS  Google Scholar 

  48. Li, Y. S.; Chen, Q.; Xu, T. T.; Xie, Z.; Liu, J. J.; Yu, X.; Ma, S. Q.; Qin, T. S.; Chen, L. De novo design and facile synthesis of 2D covalent organic frameworks: A two-in-one strategy. J. Am. Chem. Soc. 2019, 141, 13822–13828.

    CAS  Google Scholar 

  49. Mohamed, M. G.; Lee, C. C.; El-Mahdy, A. F. M.; Lüder, J.; Yu, M. H.; Li, Z.; Zhu, Z. L.; Chueh, C. C.; Kuo, S. W. Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells. J. Mater. Chem. A 2020, 8, 11448–11459.

    CAS  Google Scholar 

  50. Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartschuh, A.; Knochel, P.; Bein, T. A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew. Chem., Int. Ed. 2013, 52, 2920–2924.

    CAS  Google Scholar 

  51. Li, Z. P.; Zhi, Y. F.; Feng, X.; Ding, X. S.; Zou, Y. C.; Liu, X. M.; Mu, Y. An azine-linked covalent organic framework: Synthesis, characterization and efficient gas storage. Chem.—Eur. J. 2015, 21, 12079–12084.

    CAS  Google Scholar 

  52. Zheng, K. H.; Ge, J. F.; Liu, C.; Lou, Q.; Chen, X.; Meng, Y. Y.; Yin, X.; Bu, S. X.; Liu, C. R.; Ge, Z. Y. Improved phase stability of CsPbI2Br perovskite by released microstrain toward highly efficient and stable solar cells. InfoMat 2021, 3, 1431–1444.

    CAS  Google Scholar 

  53. Nie, R. M.; Deng, X. Y.; Feng, L.; Hu, G. G.; Wang, Y. Y.; Yu, G.; Xu, J. B. Highly sensitive and broadband organic photodetectors with fast speed gain and large linear dynamic range at low forward bias. Small 2017, 13, 1603260.

    Google Scholar 

  54. Zheng, L. P.; Zhou, Q. M.; Deng, X. Y.; Yuan, M.; Yu, G.; Cao, Y. Methanofullerenes used as electron acceptors in polymer photovoltaic devices. J. Phys. Chem. B 2004, 108, 11921–11926.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52203359), Fundamental Research Funds for the Central Universities (No. NS2022092), National Key Research and Development Program of China (No. 2019YFA0705400), Natural Science Foundation of Jiangsu Province (No. BK20212008), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nos. MCMS-I-0421K01 and MCMS-I-0422K01), the Fundamental Research Funds for the Central Universities (No. NJ2022002), the National Natural Science Foundation of China (Nos. 52073119 and 21774040), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Riming Nie, Zhongping Li or Wanlin Guo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, R., Chen, X., Li, Z. et al. Efficient and stable perovskite solar cells by build-in π-columns and ionic interfaces in covalent organic frameworks. Nano Res. 16, 9387–9397 (2023). https://doi.org/10.1007/s12274-023-5603-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5603-4

Keywords

Navigation