Skip to main content
Log in

Enhanced photocatalytic performance of Bi4O5Br2 with three-dimensionally ordered macroporous structure for phenol removal

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Herein, a series of three-dimensionally ordered macroporous (3DOM) Bi4O5Br2 photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate (PMMA) template method. The photocatalytic activity for phenol degradation over 3DOM Bi4O5Br2 first increased and then decreased with the rise in macropore size. Specifically, 3DOM Bi4O5Br2-255 (macropore diameter ca. 170 nm) exhibits the best photocatalytic activity in the static system, which is about 4.5, 7.3, and 11.9 times higher than those of bulk Bi4O5Br2, Bi2WO6, and g-C3N4, respectively. Meanwhile, high phenol conversion (75%) is also obtained over 3DOM Bi4O5Br2-255 in the flow system under full spectrum irradiation. Furthermore, 3DOM Bi4O5Br2-255 also shows strong mineralization capacity owing to the downward shift of valance band position (0.15 V) as compared with Bi4O5Br2. Total organic carbon (TOC) removal rate over 3DOM Bi4O5Br2-255 (62%) is much higher than that of Bi4O5Br2 (17%). The enhancement in photocatalytic performance of 3DOM Bi4O5Br2-255 is attributable to its better phenol adsorption, O2 activation, and charge separation and transfer abilities. This work combines the advantages of 3D structure and surface dangling bonds, providing new possibilities for designing highly efficient photocatalysts for pollutants removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

    CAS  Google Scholar 

  2. Qu, Y. Q.; Duan, X. F. Progress, challenge, and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580.

    CAS  Google Scholar 

  3. Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.

    CAS  Google Scholar 

  4. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    CAS  Google Scholar 

  5. Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

    CAS  Google Scholar 

  6. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    CAS  Google Scholar 

  7. Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.

    CAS  Google Scholar 

  8. Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283.

    CAS  Google Scholar 

  9. Dong, H. R.; Zeng, G. M.; Tang, L.; Fan, C. Z.; Zhang, C.; He, X. X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146.

    CAS  Google Scholar 

  10. Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.

    Google Scholar 

  11. Li, J.; Zhang, L. Z.; Li, Y. J.; Yu, Y. Synthesis and internal electric field dependent photoreactivity of Bi3O4Cl single-crystalline nanosheets with high {001} facet exposure percentages. Nanoscale 2014, 6, 167–171.

    CAS  Google Scholar 

  12. Li, R.; Xie, F. X.; Liu, J. X.; Wang, Y. W.; Wang, Y. F.; Zhang, X. C.; Fan, C. M. Synthesis of Bi4O5Br2 from reorganization of BiOBr and its excellent visible light photocatalytic activity. Dalton Trans. 2016, 45, 9182–9186.

    CAS  Google Scholar 

  13. Ji, M. X.; Di, J.; Liu, Y. L.; Chen, R.; Li, K.; Chen, Z. G.; Xia, J. X.; Li, H. M. Confined active species and effective charge separation in Bi4O5I2 ultrathin hollow nanotube with increased photocatalytic activity. Appl. Catal. B: Environ. 2020, 268, 118403.

    CAS  Google Scholar 

  14. Mao, D. J.; Yuan, J. L.; Qu, X. L.; Sun, C.; Yang, S. G.; He, H. Size tunable Bi3O4Br hierarchical hollow spheres assembled with {001}-facets exposed nanosheets for robust photocatalysis against phenolic pollutants. J. Catal. 2019, 369, 209–221.

    CAS  Google Scholar 

  15. Xiong, J.; Song, P.; Di, J.; Li, H. M. Bismuth-rich bismuth oxyhalides: A new opportunity to trigger high-efficiency photocatalysis. J. Mater. Chem. A 2020, 8, 21434–21454.

    CAS  Google Scholar 

  16. Jin, X. L.; Ye, L. Q.; Xie, H. Q.; Chen, G. Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis. Coord. Chem. Rev. 2017, 349, 84–101.

    CAS  Google Scholar 

  17. Di, J.; Xia, J. X.; Ji, M. X.; Yin, S.; Li, H. P.; Xu, H.; Zhang, Q.; Li, H. M. Controllable synthesis of Bi4O5Br2 ultrathin nanosheets for photocatalytic removal of ciprofloxacin and mechanism insight. J. Mater. Chem. A 2015, 3, 15108–15118.

    CAS  Google Scholar 

  18. Dong, X. A.; Cui, Z. H.; Shi, X.; Yan, P.; Wang, Z. M.; Co, A. C.; Dong, F. Insights into dynamic surface bromide sites in Bi4O5Br2 for sustainable N2 photofixation. Angew. Chem., Int. Ed. 2022, 61, e202200937.

    CAS  Google Scholar 

  19. Li, N.; Zhu, G. Q.; Hojamberdiev, M.; Zhu, R. L.; Chang, J.; Gao, J. Z.; Guo, Q. M.; Liu, P. Pd nanoparticle-decorated Bi4O5Br2 nanosheets with enhanced visible-light photocatalytic activity for degradation of bisphenol A. J. Photochem. Photobiol. A: Chem. 2011, 356, 440–450.

    Google Scholar 

  20. Wang, H. Y.; Zhou, Y.; Wang, J. N.; Li, A. M.; Corvini, P. F. X. BiOBr/Bi4O5Br2/PDI constructed for visible-light degradation of endocrine disrupting chemicals: Synergistic effects of bi-heterojunction and oxygen evolution. Chem. Eng. J. 2022, 433, 133622.

    CAS  Google Scholar 

  21. Zhu, G. Q.; Hojamberdiev, M.; Zhang, W. B.; Taj Ud Din, S.; Kim, Y. J.; Lee, J.; Yang, W. Enhanced photocatalytic activity of Fe-doped Bi4O5Br2 nanosheets decorated with Au nanoparticles for pollutants removal. Appl. Surf. Sci. 2020, 526, 146760.

    CAS  Google Scholar 

  22. Xiong, J.; Song, P.; Di, J.; Li, H. M.; Liu, Z. Freestanding ultrathin bismuth-based materials for diversified photocatalytic applications. J. Mater. Chem. A 2019, 7, 25203–25226.

    CAS  Google Scholar 

  23. Bai, Y.; Yang, P.; Wang, L.; Yang, B.; Xie, H. Q.; Zhou, Y.; Ye, L. Q. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO. Chem. Eng. J. 2019, 360, 473–482.

    CAS  Google Scholar 

  24. Xue, Y. H.; Zhang, Q.; Wang, W. J.; Cao, H.; Yang, Q. H.; Fu, L. Opening two-dimensional materials for energy conversion and storage: A concept. Adv. Energy Mater. 2017, 7, 1602684.

    Google Scholar 

  25. Jin, X. L.; Lv, C. D.; Zhou, X.; Xie, H. Q.; Sun, S. F.; Liu, Y.; Meng, Q. Q.; Chen, G. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity. Nano Energy 2019, 64, 103955.

    CAS  Google Scholar 

  26. Mao, D. J.; Ding, S. S.; Meng, L. J.; Dai, Y. X.; Sun, C.; Yang, S. G.; He, H. One-pot microemulsion-mediated synthesis of Bi-rich Bi4O5Br2 with controllable morphologies and excellent visible-light photocatalytic removal of pollutants. Appl. Catal. B: Environ. 2017, 207, 153–165.

    CAS  Google Scholar 

  27. Zhao, W.; Yang, C. X.; Huang, J. D.; Jin, X. L.; Deng, Y.; Wang, L.; Su, F. Y.; Xie, H. Q.; Wong, P. K.; Ye, L. Q. Selective aerobic oxidation of sulfides to sulfoxides in water under blue light irradiation over Bi4O5Br2. Green Chem. 2020, 22, 4884–4889.

    CAS  Google Scholar 

  28. Setvín, M.; Wagner, M.; Schmid, M.; Parkinson, G. S.; Diebold, U. Surface point defects on bulk oxides: Atomically-resolved scanning probe microscopy. Chem. Soc. Rev. 2017, 46, 1772–1784.

    Google Scholar 

  29. Bai, X. J.; Wang, X. Y.; Jia, T. Q.; Guo, L. L.; Hao, D.; Zhang, Z. Y.; Wu, L. Y.; Zhang, X. R.; Yang, H.; Gong, Y. W. et al. Efficient degradation of PPCPs by Mo1−xS2−y with S vacancy at phase-junction: Promoted by innergenerate-H2O2. Appl. Catal. B: Environ. 2022, 310, 121302.

    CAS  Google Scholar 

  30. Liu, Y. W.; Cheng, M.; He, Z. H.; Gu, B. C.; Xiao, C.; Zhou, T. F.; Guo, Z. P.; Liu, J. D.; He, H. Y.; Ye, B. J. et al. Pothole-rich ultrathin WO3 nanosheets that trigger N-N bond activation of nitrogen for direct nitrate photosynthesis. Angew. Chem., Int. Ed. 2019, 58, 731–735.

    CAS  Google Scholar 

  31. Wu, Z. H.; Shen, J.; Ma, N.; Li, Z. F.; Wu, M.; Xu, D. F.; Zhang, S. Y.; Feng, W. H.; Zhu, Y. F. Bi4O5Br2 nanosheets with vertical aligned facets for efficient visible-light-driven photodegradation of BPA. Appl. Catal. B: Environ. 2021, 286, 119937.

    CAS  Google Scholar 

  32. Liu, G. P.; Wang, B.; Zhu, X. W.; Ding, P. H.; Zhao, J. Z.; Li, H. M.; Chen, Z. R.; Zhu, W. S.; Xia, J. X. Edge-site-rich ordered macroporous BiOCl triggers C=O activation for efficient CO2 photoreduction. Small 2022, 18, 2105228.

    CAS  Google Scholar 

  33. Wen, F. S.; Liu, W. L. Three-dimensional ordered macroporous materials for photocatalysis: Design and applications. J. Mater. Chem. A 2021, 9, 18129–18147.

    CAS  Google Scholar 

  34. Cai, J. M.; Wu, M. Q.; Wang, Y. T.; Zhang, H.; Meng, M.; Tian, Y.; Li, X. G.; Zhang, J.; Zheng, L. R.; Gong, J. L. Synergetic enhancement of light harvesting and charge separation over surface-disorder-engineered TiO2 photonic crystals. Chem 2017, 2, 877–892.

    CAS  Google Scholar 

  35. Chen, X. Q.; Ye, J. H.; Ouyang, S. X.; Kako, T.; Li, Z. S.; Zou, Z. G. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano 2011, 5, 4310–4318.

    CAS  Google Scholar 

  36. Lin, B.; Yang, G. D.; Yang, B. L.; Zhao, Y. X. Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity. Appl. Catal. B: Environ. 2016, 198, 276–285.

    CAS  Google Scholar 

  37. Chang, Y.; Yu, K.; Zhang, C. X.; Li, R.; Zhao, P. Y.; Lou, L. L.; Liu, S. X. Three-dimensionally ordered macroporous WO3 supported Ag3PO4 with enhanced photocatalytic activity and durability. Appl. Catal. B: Environ. 2015, 176–177, 363–373.

    Google Scholar 

  38. Wang, X. W.; Gan, L.; Lin, Q. Z.; Ye, S.; Zhang, R. B.; Liu, J. Microterminal regulation in nanoreactors for the construction of tantalum pentoxide single-crystal ordered networks with promoting enhanced hydrogen evolution performance. Chem. Eng. J. 2022, 431, 134139.

    CAS  Google Scholar 

  39. Yu, K.; Zhang, C. X.; Chang, Y.; Feng, Y. J.; Yang, Z. Q.; Yang, T.; Lou, L. L.; Liu, S. X. Novel three-dimensionally ordered macroporous SrTiO3 photocatalysts with remarkably enhanced hydrogen production performance. Appl. Catal. B: Environ. 2017, 200, 514–520.

    CAS  Google Scholar 

  40. Wang, Z.; Hou, J. G.; Yang, C.; Jiao, S. Q.; Huang, K.; Zhu, H. M. Hierarchical metastable γ-TaON hollow structures for efficient visible-light water splitting. Energy Environ. Sci. 2013, 6, 2134–2144.

    CAS  Google Scholar 

  41. Xie, S. H.; Liu, Y. X.; Deng, J. G.; Zhao, X. T.; Yang, J.; Zhang, K. F.; Han, Z.; Arandiyan, H.; Dai, H. X. Effect of transition metal doping on the catalytic performance of Au-Pd/3DOM Mn2O3 for the oxidation of methane and o-xylene. Appl. Catal. B: Environ. 2017, 206, 221–232.

    CAS  Google Scholar 

  42. Pei, W. B.; Liu, Y. X.; Deng, J. G.; Zhang, K. F.; Hou, Z. Q.; Zhao, X. T.; Dai, H. X. Partially embedding Pt nanoparticles in the skeleton of 3DOM Mn2O3: An effective strategy for enhancing catalytic stability in toluene combustion. Appl. Catal. B: Environ. 2019, 256, 117814.

    CAS  Google Scholar 

  43. Ran, L.; Qiu, S.; Zhai, P. L.; Li, Z. W.; Gao, J. F.; Zhang, X. M.; Zhang, B.; Wang, C.; Sun, L. C.; Hou, J. G. Conformal macroporous inverse opal oxynitride-based photoanode for robust photoelectrochemical water splitting. J. Am. Chem. Soc. 2021, 143, 7402–7413.

    CAS  Google Scholar 

  44. Shu, C.; Han, C. Z.; Yang, X. Y.; Zhang, C.; Chen, Y.; Ren, S. J.; Wang, F.; Huang, F.; Jiang, J. X. Boosting the photocatalytic hydrogen evolution activity for D–π–A conjugated microporous polymers by statistical copolymerization. Adv. Mater. 2021, 33, 2008498.

    CAS  Google Scholar 

  45. Wu, H.; Irani, R.; Zhang, K. F.; Jing, L.; Dai, H. X.; Chung, H. Y.; Abdi, F. F.; Ng, Y. H. Unveiling carrier dynamics in periodic porous BiVO4 photocatalyst for enhanced solar water splitting. ACS Energy Lett. 2021, 6, 3400–3407.

    CAS  Google Scholar 

  46. Wang, F. L.; Hou, T. T.; Zhao, X.; Yao, W.; Fang, R. Q.; Shen, K.; Li, Y. W. Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO2 reduction. Adv. Mater. 2021, 33, 2102690.

    CAS  Google Scholar 

  47. Qiu, B. C.; Zhu, Q. H.; Du, M. M.; Fan, L. G.; Xing, M. Y.; Zhang, J. L. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew. Chem., Int. Ed. 2017, 56, 2684–2688.

    CAS  Google Scholar 

  48. Hou, J. H.; Dai, D.; Wei, R.; Wu, X. G.; Wang, X. Z.; Tahir, M.; Zou, J. J. Narrowing the band gap of BiOCl for the hydroxyl radical generation of photocatalysis under visible light. ACS Sustainable Chem. Eng. 2019, 7, 16569–16576.

    CAS  Google Scholar 

  49. Zhang, K. F.; Chen, H. X.; Liu, Y. X.; Deng, J. G.; Jing, L.; Rastegarpanah, A.; Pei, W. B.; Han, Z.; Dai, H. X. Two-dimensional Bi2WxMo1−xO6 solid solution nanosheets for enhanced photocatalytic toluene oxidation to benzaldehyde. Appl. Catal. B: Environ. 2022, 315, 121545.

    CAS  Google Scholar 

  50. Wang, J. L.; Yu, Y.; Zhang, L. Z. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl. Catal. B: Environ. 2013, 136–137, 112–121.

    Google Scholar 

  51. Di, J.; Xia, J. X.; Chisholm, M. F.; Zhong, J.; Chen, C.; Cao, X. Z.; Dong, F.; Chi, Z.; Chen, H. L.; Weng, Y. X. et al. Defect-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv. Mater. 2019, 31, 1807576.

    Google Scholar 

  52. Wei, Z.; Wang, W. C.; Li, W. L.; Bai, X. Q.; Zhao, J. F.; Tse, E. C. M.; Phillips, D. L.; Zhu, Y. F. Steering electron-hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 8236–8242.

    CAS  Google Scholar 

  53. Tong, X. J.; Cao, X.; Han, T.; Cheong, W. C.; Lin, R.; Chen, Z.; Wang, D. S.; Chen, C.; Peng, Q.; Li, Y. D. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res. 2019, 12, 1625–1630.

    CAS  Google Scholar 

  54. Han, T.; Cao, X.; Sun, K. A.; Peng, Q.; Ye, C. L.; Huang, A. J.; Cheong, W. C.; Chen, Z.; Lin, R.; Zhao, D. et al. Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nat. Commun. 2021, 12, 4952.

    CAS  Google Scholar 

  55. Jing, J. F.; Yang, J.; Zhang, Z. J.; Zhu, Y. F. Supramolecular zinc porphyrin photocatalyst with strong reduction ability and robust built-in electric field for highly efficient hydrogen production. Adv. Energy Mater. 2021, 11, 2101392.

    CAS  Google Scholar 

  56. Guo, Y.; Shi, W. X.; Zhu, Y. F. Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. EcoMat 2019, 1, e12007.

    Google Scholar 

  57. Liu, D.; Yao, W. Q.; Wang, J.; Liu, Y. F.; Zhang, M.; Zhu, Y. F. Enhanced visible light photocatalytic performance of a novel heterostructured Bi4O5Br2/Bi24O31Br10/Bi2SiO5 photocatalyst. Appl. Catal. B: Environ. 2015, 172–173, 100–107.

    Google Scholar 

  58. Xiao, X.; Tu, S. H.; Lu, M. L.; Zhong, H.; Zheng, C. X.; Zuo, X. X.; Nan, J. M. Discussion on the reaction mechanism of the photocatalytic degradation of organic contaminants from a viewpoint of semiconductor photo-induced electrocatalysis. Appl. Catal. B: Environ. 2016, 198, 124–132.

    CAS  Google Scholar 

  59. Zhang, L. L.; Wang, Z. Q.; Li, T.; Hu, C.; Yang, M. Ultrathin Bi4O5Br2 nanosheets with surface oxygen vacancies and strong interaction with Bi2O2CO3 for highly efficient removal of water contaminants. Environ. Sci.: Nano 2022, 9, 1341–1352.

    CAS  Google Scholar 

  60. Ji, X. Y.; Wang, Y. Y.; Li, Y.; Sun, K.; Yu, M.; Tao, J. Enhancing photocatalytic hydrogen peroxide production of Ti-based metal-organic frameworks: The leading role of facet engineering. Nano Res. 2022, 15, 6045–6053.

    CAS  Google Scholar 

  61. Zhang, K. F.; Liu, Y. X.; Deng, J. G.; Xie, S. H.; Zhao, X. T.; Yang, J.; Han, Z.; Dai, H. X. Co-Pd/BiVO4: High-performance photocatalysts for the degradation of phenol under visible light irradiation. Appl. Catal. B: Environ. 2011, 224, 350–359.

    Google Scholar 

  62. Mao, Y. S.; Wang, P. F.; Li, L. N.; Chen, Z. W.; Wang, H. T.; Li, Y.; Zhan, S. H. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2−x for efficient molecular-oxygen activation. Angew. Chem., Int. Ed. 2020, 59, 3685–3690.

    CAS  Google Scholar 

  63. Wang, T.; Tao, X. Q.; Xiao, Y.; Qiu, G. H.; Yang, Y.; Li, B. X. Charge separation and molecule activation promoted by Pd/MIL-125-NH2 hybrid structures for selective oxidation reactions. Catal. Sci. Technol. 2020, 10, 138–146.

    CAS  Google Scholar 

  64. Zhou, Z. T.; Li, K. X.; Deng, W. Y.; Li, J.; Yan, Y. H.; Li, Y. W.; Quan, X. K.; Wang, T. Nitrogen vacancy mediated exciton dissociation in carbon nitride nanosheets: Enhanced hydroxyl radicals generation for efficient photocatalytic degradation of organic pollutants. J. Hazard. Mater. 2020, 387, 122023.

    CAS  Google Scholar 

  65. Ji, J. H.; Yan, Q. Y.; Yin, P. C.; Mine, S.; Matsuoka, M.; Xing, M. Y. Defects on CoS2−x: Tuning redox reactions for sustainable degradation of organic pollutants. Angew. Chem., Int. Ed. 2021, 60, 2903–2908.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22206102, 21872077, and 21621003), the National Key Research and Development Program of China (No. 2020YFA0710304), and the China Postdoctoral Science Foundation (No. 2021M700078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfa Zhu.

Electronic Supplementary Material

12274_2023_5582_MOESM1_ESM.pdf

Enhanced photocatalytic performance of Bi4O5Br2 with three-dimensionally ordered macroporous structure for phenol removal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Chen, H., Pei, W. et al. Enhanced photocatalytic performance of Bi4O5Br2 with three-dimensionally ordered macroporous structure for phenol removal. Nano Res. 16, 8871–8881 (2023). https://doi.org/10.1007/s12274-023-5582-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5582-5

Keywords

Navigation