Skip to main content
Log in

Synthesis and application of green solvent dispersed organic semiconducting nanoparticles

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Organic photovoltaic semiconductors have made significant progress and have promising application prospects after decades of development. When compared with traditional semiconductors, the solution method for preparing photovoltaic semiconductors shows the advantages of low cost and convenient preparation. However, because of the extremely poor solubility of the polymers used to prepare semiconductors, toxic solvents must be used when using the solution method, which has significant negative effects on the environment and operators and severely limits its development prospects. Organic nanoparticles (NPs), on the other hand, can avoid these issues. Because NPs are typically water or alcohol-based, no toxic solvents are used. Furthermore, NPs have been used in organic solar cells, hydrogen catalysis, organic light-emitting diodes, and other fields after nearly two decades of development, and their preparation methods have been developed. We describe the preparation, optimization, and application of NPs in photovoltaic semiconductors in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferraris, J.; Cowan, D. O.; Walatka, V.; Perlstein, J. H. Electron transfer in a new highly conducting donor—acceptor complex. J. Am. Chem. Soc. 1973, 95, 948–949.

    CAS  Google Scholar 

  2. Shirakawa, H.; Louis, E. J.; MaCdiarmid, A. G.; Ching, C. K.; Heeger, A. J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 578–580.

  3. Granström, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H. Laminated fabrication of polymeric photovoltaic diodes. Nature 1998, 395, 257–260.

    Google Scholar 

  4. Li, X. J.; Pan, F.; Sun, C. K.; Zhang, M.; Wang, Z. W.; Du, J. Q.; Wang, J.; Xiao, M.; Xue, L. W.; Zhang, Z. G. et al. Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nat. Commun. 2019, 10, 519.

    CAS  Google Scholar 

  5. Chen, Y. N.; Zhao, Y.; Liang, Z. Q. Solution processed organic thermoelectrics: Towards flexible thermoelectric modules. Energy Environ. Sci. 2015, 8, 401–422.

    CAS  Google Scholar 

  6. Qian, Y.; Zhang, X. W.; Qi, D. P.; Xie, L. H.; Chandran, B. K.; Chen, X. D.; Huang, W. Thin-film organic semiconductor devices: From flexibility to ultraflexibility. Sci. China Mater. 2016, 59, 589–608.

    CAS  Google Scholar 

  7. Qian, Y.; Zhang, X. W.; Xie, L. H.; Qi, D. P.; Chandran, B. K.; Chen, X. D.; Huang, W. Stretchable organic semiconductor devices. Adv. Mater. 2016, 28, 9243–9265.

    CAS  Google Scholar 

  8. Kubo, T.; Häusermann, R.; Tsurumi, J.; Soeda, J.; Okada, Y.; Yamashita, Y.; Akamatsu, N.; Shishido, A.; Mitsui, C.; Okamoto, T. et al. Suppressing molecular vibrations in organic semiconductors by inducing strain. Nat. Commun. 2016, 7, 11156.

    CAS  Google Scholar 

  9. Stolle, A.; Szuppa, T.; Leonhardt, S. E. S.; Ondruschka, B. Ball milling in organic synthesis: Solutions and challenges. Chem. Soc. Rev. 2011, 40, 2317–2329.

    CAS  Google Scholar 

  10. Wang, G. W. Mechanochemical organic synthesis. Chem. Soc. Rev. 2013, 42, 7668–7700.

    CAS  Google Scholar 

  11. Báti, G.; Csókás, D.; Yong, T.; Tam, S. M.; Shi, R. R. S.; Webster, R. D.; Pápai, I.; García, F.; Stuparu, M. C. Mechanochemical synthesis of corannulene-based curved nanographenes. Angew. Chem., Int. Ed. 2020, 59, 21620–21626.

    Google Scholar 

  12. Seo, T.; Toyoshima, N.; Kubota, K.; Ito, H. Tackling solubility issues in organic synthesis: Solid-state cross-coupling of insoluble aryl halides. J. Am. Chem. Soc. 2021, 143, 6165–6175.

    CAS  Google Scholar 

  13. Qin, Z. S.; Gao, C.; Gao, H. K.; Wang, T. Y.; Dong, H. L.; Hu, W. P. Molecular doped, color-tunable, high-mobility, emissive, organic semiconductors for light-emitting transistors. Sci. Adv. 2022, 8, eabp8775.

    CAS  Google Scholar 

  14. Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. N. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504–508.

    CAS  Google Scholar 

  15. Gao, P.; Beckmann, D.; Tsao, H. N.; Feng, X. L.; Enkelmann, V.; Baumgarten, M.; Pisula, W.; Müllen, K. Dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;4,5-b′]dithiophene (DTBDT) as semiconductor for high-performance, solution-processed organic field-effect transistors. Adv. Mater. 2009, 21, 213–216.

    CAS  Google Scholar 

  16. Ho, D.; Lee, J.; Park, S.; Park, Y.; Cho, K.; Campana, F.; Lanari, D.; Facchetti, A.; Seo, S.; Kim, C. et al. Green solvents for organic thin-film transistor processing. J. Mater. Chem. C 2020, 8, 5786–5794.

    CAS  Google Scholar 

  17. Walker, B.; Tamayo, A.; Duong, D. T.; Dang, X. D.; Kim, C.; Granstrom, J.; Nguyen, T. Q. A systematic approach to solvent selection based on cohesive energy densities in a molecular bulk heterojunction system. Adv. Energy Mater. 2011, 1, 221–229.

    CAS  Google Scholar 

  18. Campana, F.; Lanari, D.; Marrocchi, A.; Vaccaro, L. Green solvents for organic electronics processing. In Sustainable Strategies in Organic Electronics; Marrocchi, A., Ed; Elsevier: Amsterdam, 2022; pp 425–462.

    Google Scholar 

  19. Henderson, R. K.; Jiménez-González, C.; Constable, D. J. C.; Alston, S. R.; Inglis, G. G. A.; Fisher, G.; Sherwood, J.; Binks, S. P.; Curzons, A. D. Expanding GSK’s solvent selection guide-embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem. 2011, 13, 854–862.

    CAS  Google Scholar 

  20. Li, S. L.; Zhang, H.; Yue, S. L.; Yu, X.; Zhou, H. Q. Recent advances in non-fullerene organic photovoltaics enabled by green solvent processing. Nanotechnology 2022, 33, 072002.

    CAS  Google Scholar 

  21. Duan, C. H.; Zhang, K.; Zhong, C. M.; Huang, F.; Cao, Y. Recent advances in water/alcohol-soluble π-conjugated materials: New materials and growing applications in solar cells. Chem. Soc. Rev. 2013, 42, 9071–9104.

    CAS  Google Scholar 

  22. Tada, K. Yet another poor man’s green bulk heterojunction photocells: Annealing effect and film composition dependence of photovoltaic devices using poly(3-hexylthiophene): C70 composites prepared with chlorine-free solvent. Sol. Energy Mater. Sol. Cells 2013, 108, 82–86.

    CAS  Google Scholar 

  23. Campana, F.; Kim, C.; Marrocchi, A.; Vaccaro, L. Green solvent-processed organic electronic devices. J. Mater. Chem. C 2020, 8, 15027–15047.

    CAS  Google Scholar 

  24. Lee, W. Y.; Giri, G.; Diao, Y.; Tassone, C. J.; Matthews, J. R.; Sorensen, M. L.; Mannsfeld, S. C. B.; Chen, W. C.; Fong, H. H.; Tok, J. B. H. et al. Effect of non-chlorinated mixed solvents on charge transport and morphology of solution-processed polymer field-effect transistors. Adv. Funct. Mater. 2014, 24, 3524–3534.

    CAS  Google Scholar 

  25. Zhang, L. Z.; Zhou, X. Y.; Zhong, X. W.; Cheng, C.; Tian, Y. Q.; Xu, B. M. Hole-transporting layer based on a conjugated polyelectrolyte with organic cations enables efficient inverted perovskite solar cells. Nano Energy 2019, 57, 248–255.

    CAS  Google Scholar 

  26. Chen, Y.; Zhang, S. Q.; Wu, Y.; Hou, J. H. Molecular design and morphology control towards efficient polymer solar cells processed using non-aromatic and non-chlorinated solvents. Adv. Mater. 2014, 26, 2744–2749.

    CAS  Google Scholar 

  27. Zhao, Y.; Xie, Z. Y.; Qin, C. J.; Qu, Y.; Geng, Y. H.; Wang, L. X. Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated polyfluorene as cathode buffer layer. Sol. Energy Mater. Sol. Cells 2009, 93, 604–608.

    CAS  Google Scholar 

  28. Yassar, A.; Miozzo, L.; Gironda, R.; Horowitz, G. Rod-coil and all-conjugated block copolymers for photovoltaic applications. Prog. Polym. Sci. 2013, 38, 791–844.

    CAS  Google Scholar 

  29. Tang, F.; Wu, K. L.; Zhou, Z. J.; Wang, G.; Zhao, B.; Tan, S. T. Alkynyl-functionalized pyrene-cored perylene diimide electron acceptors for efficient nonfullerene organic solar cells. ACS Appl. Energy Mater. 2019, 2, 3918–3926.

    CAS  Google Scholar 

  30. Ding, S.; Ni, Z. J.; Hu, M. X.; Qiu, G. G.; Li, J.; Ye, J.; Zhang, X. T.; Liu, F.; Dong, H. L.; Hu, W. P. An asymmetric furan/thieno[3, 2-b]thiophene diketopyrrolopyrrole building block for annealing-free green-solvent processable organic thin-film transistors. Macromol. Rapid Commun. 2018, 39, 1800225.

    Google Scholar 

  31. Choi, H. H.; Baek, J. Y.; Song, E.; Kang, B.; Cho, K.; Kwon, S. K.; Kim, Y. H. A pseudo-regular alternating conjugated copolymer using an asymmetric monomer: A high-mobility organic transistor in nonchlorinated solvents. Adv. Mater. 2015, 27, 3626–3631.

    CAS  Google Scholar 

  32. Li, Z. Y.; Ying, L.; Zhu, P.; Zhong, W. K.; Li, N.; Liu, F.; Huang, F.; Cao, Y. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci. 2019, 12, 157–163.

    CAS  Google Scholar 

  33. Zhao, W. C.; Zhang, S. Q.; Zhang, Y.; Li, S. S.; Liu, X. Y.; He, C.; Zheng, Z.; Hou, J. H. Environmentally friendly solvent-processed organic solar cells that are highly efficient and adaptable for the blade-coating method. Adv. Mater. 2018, 30, 1704837.

    Google Scholar 

  34. Ma, Z. W.; Zhao, B.; Gong, Y. S.; Deng, J. P.; Tan, Z. A. Green-solvent-processable strategies for achieving large-scale manufacture of organic photovoltaics. J. Mater. Chem. A 2019, 7, 22826–22847.

    CAS  Google Scholar 

  35. Rao, J. P.; Geckeler, K. E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, 887–913.

    CAS  Google Scholar 

  36. Li, K. X.; Zhang, T. L.; Li, H. Z.; Li, M. Z., Song, Y. L. The precise assembly of nanoparticles. Acta Phys. Chim. Sin. 2020, 36, 1911057.

    Google Scholar 

  37. Mishchuk, N. A.; Verbich, S. V.; Dukhin, S. S.; Holt, Ø.; Sjöblom, J. Rapid brownian coagulation in dilute polydisperse emulsions. J. Dispersion Sci. Technol. 1997, 18, 517–537.

    Google Scholar 

  38. Kabalnov, A. S.; Pertzov, A. V.; Shchukin, E. D. Ostwald ripening in emulsions: I. Direct observations of Ostwald ripening in emulsions. J. Colloid Interface Sci. 1987, 118, 590–570.

    CAS  Google Scholar 

  39. Landfester, K.; Montenegro, R.; Scherf, U.; Güntner, R.; Asawapirom, U.; Patil, S.; Neher, D.; Kietzke, T. Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process. Adv. Mater. 2002, 14, 651–655.

    CAS  Google Scholar 

  40. Fessi, H.; Puisieux, F.; Devissaguet, J. P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4.

    CAS  Google Scholar 

  41. Mora-Huertas, C. E.; Fessi, H.; Elaissari, A. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods: Critical comparison. Adv. Colloid Interface Sci. 2011, 163, 90–122.

    CAS  Google Scholar 

  42. Gavory, C.; Durand, A.; Six, J. L.; Nouvel, C.; Marie, E.; Leonard, M. Polysaccharide-covered nanoparticles prepared by nanoprecipitation. Carbohydr. Polym. 2011, 84, 133–140.

    CAS  Google Scholar 

  43. Holmes. A.; Deniau, E.; Lartigau-Dagron, C.; Bousquet, A.; Chambon, S.; Holmes, N. P. Review of waterborne organicsemiconductor colloids for photovoltaics. ACS Nano 2021, 15, 3927–3959.

    CAS  Google Scholar 

  44. Landfester, K. The generation of nanoparticles in miniemulsions. Adv. Mater. 2001, 13, 765–768.

    CAS  Google Scholar 

  45. Aubry, J.; Ganachaud, F.; Addad, J. P. C.; Cabane, B. Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. Langmuir 2009, 25, 1970–1979.

    CAS  Google Scholar 

  46. Chambon, S.; Schatz, C.; Sébire, V.; Pavageau, B.; Wantz, G.; Hirsch, L. Organic semiconductor core—shell nanoparticles designed through successive solvent displacements. Mater. Horiz. 2014, 1, 431–438.

    CAS  Google Scholar 

  47. Palacio Valera, A.; Schatz, C.; Ibarboure, E.; Kubo, T.; Segawa, H.; Chambon, S. Elaboration of PCBM coated P3HT nanoparticles: Understanding the shell formation. Front. Energy Res. 2019, 6, 146.

    Google Scholar 

  48. Tan, B.; Li, Y. C.; Palacios, M. F.; Therrien, J.; Sobkowicz, M. J. Effect of surfactant conjugation on structure and properties of poly(3-hexylthiophene) colloids and field effect transistors. Colloids Surf. A: Physicochem. Eng. Aspects 2016, 488, 7–14.

    CAS  Google Scholar 

  49. Cho, J.; Yoon, S.; Sim, K. M.; Jeong, Y. J.; Park, C. E.; Kwon, S. K.; Kim, Y. H.; Chung, D. S. Universal selection rule for surfactants used in miniemulsion processes for eco-friendly and high performance polymer semiconductors. Energy Environ. Sci. 2017, 10, 2324–2333.

    CAS  Google Scholar 

  50. Kosco, J.; Bidwell, M.; Cha, H.; Martin, T.; Howells, C. T.; Sachs, M.; Anjum, D. H.; Lopez, S. G.; Zou, L. Y.; Wadsworth, A. et al. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater. 2020, 19, 559–565.

    CAS  Google Scholar 

  51. Cho, J.; Cheon, K. H.; Ahn, H.; Park, K. H.; Kwon, S. K.; Kim, Y. H.; Chung, D. S. High charge-carrier mobility of 2.5 cm2·V−1·s−1 from a water-borne colloid of a polymeric semiconductor via smart surfactant engineering. Adv. Mater. 2015, 27, 5587–5592.

    CAS  Google Scholar 

  52. Stapleton, A.; Vaughan, B.; Xue, B. F.; Sesa, E.; Burke, K.; Zhou, X. J.; Bryant, G.; Werzer, O.; Nelson, A.; Kilcoyne, A. L. D. et al. A multilayered approach to polyfluorene water-based organic photovoltaics. Sol. Energy Mater. Sol. Cells 2012, 102, 114–124.

    CAS  Google Scholar 

  53. Xie, C.; Heumüller, T.; Gruber, W.; Tang, X. F.; Classen, A.; Schuldes, I.; Bidwell, M.; Späth, A.; Fink, R. H.; Unruh, T. et al. Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. Nat. Commun. 2018, 9, 5335.

    CAS  Google Scholar 

  54. Colberts, F. J. M.; Wienk, M. M.; Janssen, R. A. J. Aqueous nanoparticle polymer solar cells: Effects of surfactant concentration and processing on device performance. ACS Appl. Mater. Interfaces 2017, 9, 13380–13389.

    CAS  Google Scholar 

  55. Kietzke, T.; Neher, D.; Landfester, K.; Montenegro, R.; Güntner, R.; Scherf, U. Novel approaches to polymer blends based on polymer nanoparticles. Nat. Mater. 2003, 2, 408–412.

    CAS  Google Scholar 

  56. Ulum, S.; Holmes, N.; Darwis, D.; Burke, K.; Kilcoyne, A. L. D.; Zhou, X. J.; Belcher, W.; Dastoor, P. Determining the structural motif of P3HT: PCBM nanoparticulate organic photovoltaic devices. Sol. Energy Mater. Sol. Cells 2013, 110, 43–48.

    CAS  Google Scholar 

  57. Piok, T.; Gamerith, S.; Gadermaier, C.; Plank, H.; Wenzl, F. P.; Patil, S.; Montenegro, R.; Kietzke, T.; Neher, D.; Scherf, U. et al. Organic light-emitting devices fabricated from semiconducting nanospheres. Adv. Mater. 2003, 15, 800–804.

    CAS  Google Scholar 

  58. Ulum, S.; Holmes, N.; Barr, M.; Kilcoyne, A. L. D.; Gong, B. B.; Zhou, X. J.; Belcher, W.; Dastoor, P. The role of miscibility in polymer: Fullerene nanoparticulate organic photovoltaic devices. Nano Energy 2013, 2, 897–905.

    CAS  Google Scholar 

  59. Holmes, N. P.; Nicolaidis, N.; Feron, K.; Barr, M.; Burke, K. B.; Al-Mudhaffer, M.; Sista, P.; Kilcoyne, A. L. D.; Stefan, M. C.; Zhou, X. J. et al. Probing the origin of photocurrent in nanoparticulate organic photovoltaics. Sol. Energy Mater. Sol. Cells 2015, 140, 412–421.

    CAS  Google Scholar 

  60. Holmes, N. P.; Marks, M.; Kumar, P.; Kroon, R.; Barr, M. G.; Nicolaidis, N.; Feron, K.; Pivrikas, A.; Fahy, A.; de Zerio Mendaza, A. D. et al. Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics. Nano Energy 2016, 19, 495–510.

    CAS  Google Scholar 

  61. D’Olieslaeger, L.; Pirotte, G.; Cardinaletti, I.; D’Haen, J.; Manca, J.; Vanderzande, D.; Maes, W.; Ethirajan, A. Eco-friendly fabrication of PBDTTPD:PC71BM solar cells reaching a PCE of 3.8% using water-based nanoparticle dispersions. Org. Electron. 2017, 42, 42–46.

    Google Scholar 

  62. Prunet, G.; Parrenin, L.; Pavlopoulou, E.; Pecastaings, G.; Brochon, C.; Hadziioannou, G.; Cloutet, E. Aqueous PCDTBT:PC71BM photovoltaic inks made by nanoprecipitation. Macromol. Rapid Commun. 2018, 39, 1700504.

    Google Scholar 

  63. Parrenin, L.; Laurans, G.; Pavlopoulou, E.; Fleury, G.; Pecastaings, G.; Brochon, C.; Vignau, L.; Hadziioannou, G.; Cloutet, E. Photoactive donor—acceptor composite nanoparticles dispersed in water. Langmuir 2017, 33, 1507–1515.

    CAS  Google Scholar 

  64. Xie, C.; Classen, A.; Späth, A.; Tang, X. F.; Min, J.; Meyer, M.; Zhang, C. H.; Li, N.; Osvet, A.; Fink, R. H. et al. Overcoming microstructural limitations in water processed organic solar cells by engineering customized nanoparticulate inks. Adv. Energy Mater. 2018, 8, 1702857.

    Google Scholar 

  65. Pan, X.; Sharma, A.; Gedefaw, D.; Kroon, R.; de Zerio, A. D.; Holmes, N. P.; Kilcoyne, A. L. D.; Barr, M. G.; Fahy, A.; Marks, M. et al. Environmentally friendly preparation of nanoparticles for organic photovoltaics. Org. Electron. 2018, 59, 432–440.

    CAS  Google Scholar 

  66. Andersen, T. R.; Larsen-Olsen, T. T.; Andreasen, B.; Böttiger, A. P. L.; Carlé, J. E.; Helgesen, M.; Bundgaard, E.; Norrman, K.; Andreasen, J. W.; Jørgensen, M.; Krebs, F. C. Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods. ACS Nano 2011, 5, 4188–4196.

    CAS  Google Scholar 

  67. Vaughan, B.; Williams, E. L.; Holmes, N. P.; Sonar, P.; Dodabalapur, A.; Dastoor, P. C.; Belcher, W. J. Water-based nanoparticulate solar cells using a diketopyrrolopyrrole donor polymer. Phys. Chem. Chem. Phys. 2014, 16, 2647–2653.

    CAS  Google Scholar 

  68. Yamamoto, N. A. D.; Payne, M. E.; Koehler, M.; Facchetti, A.; Roman, L. S.; Arias, A. C. Charge transport model for photovoltaic devices based on printed polymer: Fullerene nanoparticles. Sol. Energy Mater. Sol. Cells 2015, 141, 171–177.

    CAS  Google Scholar 

  69. D’Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van Der Auweraer, M.; Van Tendeloo, G.; Bals, S.; Maes, W.; Vanderzande, D.; Manca, J. et al. Tuning of PCDTBT:PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells. Sol. Energy Mater. Sol. Cells 2017, 159, 179–188.

    Google Scholar 

  70. Larsen-Olsen, T. T.; Andreasen, B.; Andersen, T. R.; Böttiger, A. P. L.; Bundgaard, E.; Norrman, K.; Andreasen, J. W.; Jørgensen, M.; Krebs, F. C. Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water. Sol. Energy Mater. Sol. Cells 2012, 97, 22–27.

    CAS  Google Scholar 

  71. Gehan, T. S.; Bag, M.; Renna, L. A.; Shen, X. B.; Algaier, D. D.; Lahti, P. M.; Russell, T. P.; Venkataraman, D. Multiscale active layer morphologies for organic photovoltaics through self-assembly of nanospheres. Nano Lett. 2014, 14, 5238–5243.

    CAS  Google Scholar 

  72. Holmes, N. P.; Ulum, S.; Sista, P.; Burke, K. B.; Wilson, M. G.; Stefan, M. C.; Zhou, X. J.; Dastoor, P. C.; Belcher, W. J. The effect of polymer molecular weight on P3HT:PCBM nanoparticulate organic photovoltaic device performance. Sol. Energy Mater. Sol. Cells 2014, 128, 369–377.

    CAS  Google Scholar 

  73. Bag, M.; Gehan, T. S.; Renna, L. A.; Algaier, D. D.; Lahti, P. M.; Venkataraman, D. Fabrication conditions for efficient organic photovoltaic cells from aqueous dispersions of nanoparticles. RSC Adv. 2014, 4, 45325–45331.

    CAS  Google Scholar 

  74. Almyahi, F.; Andersen, T. R.; Fahy, A.; Dickinson, M.; Feron, K.; Belcher, W. J.; Dastoor, P. C. The role of surface energy control in organic photovoltaics based on solar paints. J. Mater. Chem. A 2019, 7, 9202–9214.

    CAS  Google Scholar 

  75. Gärtner, S.; Christmann, M.; Sankaran, S.; Röhm, H.; Prinz, E. M.; Penth, F.; Pütz, A.; Türeli, A. E.; Penth, B.; Baumstümmler, B. et al. Eco-friendly fabrication of 4% efficient organic solar cells from surfactant-free P3HT:ICBA nanoparticle dispersions. Adv. Mater. 2014, 26, 6653–6657.

    Google Scholar 

  76. Gärtner, S.; Clulow, A. J.; Howard, I. A.; Gilbert, E. P.; Burn, P. L.; Gentle, I. R.; Colsmann, A. Relating structure to efficiency in surfactant-free polymer/fullerene nanoparticle-based organic solar cells. ACS Appl. Mater. Interfaces 2017, 9, 42986–42995.

    Google Scholar 

  77. Sankaran, S.; Glaser, K.; Gärtner, S.; Rödlmeier, T.; Sudau, K.; Hernandez-Sosa, G.; Colsmann, A. Fabrication of polymer solar cells from organic nanoparticle dispersions by doctor blading or inkjet printing. Org. Electron. 2016, 28, 118–122.

    CAS  Google Scholar 

  78. Xie, C.; Tang, X. F.; Berlinghof, M.; Langner, S.; Chen, S.; Späth, A.; Li, N.; Fink, R. H.; Unruh, T.; Brabec, C. J. Robot-based high-throughput engineering of alcoholic polymer: Fullerene nanoparticle inks for an eco-friendly processing of organic solar cells. ACS Appl. Mater. Interfaces 2018, 10, 23225–23234.

    CAS  Google Scholar 

  79. Darwis, D.; Holmes, N.; Elkington, D.; David Kilcoyne, A. L.; Bryant, G.; Zhou, X. J.; Dastoor, P.; Belcher, W. Surfactant-free nanoparticulate organic photovoltaics. Sol. Energy Mater. Sol. Cells 2014, 121, 99–107.

    CAS  Google Scholar 

  80. Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869.

    CAS  Google Scholar 

  81. Tahir, M.; Tasleem, S.; Tahir, B. Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 2020, 45, 15985–16038.

    CAS  Google Scholar 

  82. Pan, J. B.; Shen, S.; Zhou, W.; Tang, J.; Ding, H. Z.; Wang, J. B.; Chen, L.; Au, C. T.; Yin, S. F. Recent progress in photocatalytic hydrogen evolution. cta Phys.—Chim. Sin. 2020, 36, 1905068.

    Google Scholar 

  83. Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

    CAS  Google Scholar 

  84. Zhang, D. P.; Li, Y. X.; Li, Y.; Zhan, S. H. Towards single-atom photocatalysts for future carbon-neutral application. SmartMat 2022, 3, 417–446.

    CAS  Google Scholar 

  85. Liu, A. J.; Tai, C. W.; Holá, K.; Tian, H. N. Hollow polymer dots: Nature-mimicking architecture for efficient photocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 4797–4803.

    CAS  Google Scholar 

  86. Wang, L.; Fernández-Terán, R.; Zhang, L.; Fernandes, D. L. A.; Tian, L.; Chen, H.; Tian, H. N. Organic polymer dots as photocatalysts for visible light-driven hydrogen generation. Angew. Chem., Int. Ed. 2016, 55, 12306–12310.

    CAS  Google Scholar 

  87. Kosco, J.; Sachs, M.; Godin, R.; Kirkus, M.; Francas, L.; Bidwell, M.; Qureshi, M.; Anjum, D.; Durrant, J. R.; McCulloch, I. The effect of residual palladium catalyst contamination on the photocatalytic hydrogen evolution activity of conjugated polymers. Adv. Energy Mater. 2018, 8, 1802181.

    Google Scholar 

  88. Kosco, J.; Gonzalez-Carrero, S.; Howells, C. T.; Fei, T.; Dong, Y. F.; Sougrat, R.; Harrison, G. T.; Firdaus, Y.; Sheelamanthula, R.; Purushothaman, B. et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat. Energy 2022, 7, 340–351.

    CAS  Google Scholar 

  89. Zhou, K.; Tang, J.; Fang, S. F.; Jiang, K.; Yang, F. X.; Ji, D. Y.; Xiang, J.; Liu, J.; Dong, H. L.; Han, C. et al. Efficient energy transfer in organic light-emitting transistor with tunable wavelength. Nano Res. 2021, 15, 3647–3652.

    Google Scholar 

  90. Zheng, L.; Li, J. F.; Zhou, K.; Yu, X. X.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Molecular-scale integrated multi-functions for organic light-emitting transistors. Nano Res. 2022, 13, 1976–1981.

    Google Scholar 

  91. Ribeiro, A. H.; Fakih, A.; van der Zee, B.; Veith, L.; Glaser, G.; Kunz, A.; Landfester, K.; Blom, P. W. M.; Michels, J. J. Green and stable processing of organic light-emitting diodes from aqueous nanodispersions. J. Mater. Chem. C 2020, 8, 6528–6535.

    CAS  Google Scholar 

  92. Kim, G.; Kang, S. J.; Dutta, G. K.; Han, Y. K.; Shin, T. J.; Noh, Y. Y.; Yang, C. A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/(V·s) that substantially exceeds benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 2014, 136, 9477–9483.

    CAS  Google Scholar 

  93. Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K. W.; Amassian, A.; Anthopoulos, T. D.; Patil, S. Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors. J. Am. Chem. Soc. 2012, 134, 16532–16535.

    CAS  Google Scholar 

  94. Millstone, J. E.; Kavulak, D. F.; Woo, C. H.; Holcombe, T. W.; Westling, E. J.; Briseno, A. L.; Toney, M. F.; Fréchet, J. M. J. Synthesis, properties, and electronic applications of size-controlled poly(3-hexylthiophene) nanoparticles. Langmuir 2010, 26, 13056–13061.

    CAS  Google Scholar 

  95. Cho, J.; Cheon, K. H.; Park, K. H.; Kwon, S. K.; Kim, Y. H.; Chung, D. S. Colloids of semiconducting polymers for high-performance, environment-friendly polymer field effect transistors. Org. Electron. 2015, 24, 160–164.

    CAS  Google Scholar 

  96. Cho, J.; Cheon, K. H.; Ha, J.; Chung, D. S. Water-based high-performance polymer field effect transistors enabled by heat-assisted surfactant elimination. Chem. Eng. J. 2016, 286, 122–127.

    CAS  Google Scholar 

  97. Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem., Int. Ed. 2008, 47, 4070–4098.

    CAS  Google Scholar 

  98. Ferretti, A. M.; Diterlizzi, M.; Porzio, W.; Giovanella, U.; Ganzer, L.; Virgili, T.; Vohra, V.; Arias, E.; Moggio, I.; Scavia, G. et al. Rod-coil block copolymer: Fullerene blend water-processable nanoparticles: How molecular structure addresses morphology and efficiency in NP-OPVs. Nanomaterials 2022, 12, 84.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21922505 and 52273245) and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Zhang, Bing Han, Jia-jie Kang or Huiqiong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, H., Yang, S. et al. Synthesis and application of green solvent dispersed organic semiconducting nanoparticles. Nano Res. 16, 13419–13433 (2023). https://doi.org/10.1007/s12274-023-5564-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5564-7

Keywords

Navigation