Skip to main content
Log in

Promoting polysulfide conversions via cobalt single-atom catalyst for fast and durable lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although promising strategies have been developed to resolve the critical drawbacks of lithium-sulfur (Li-S) batteries, the intractable issues including undesirable shuttling of polysulfides and sluggish redox reaction kinetics have still been unresolved thoroughly. Herein, a cobalt single-atom (CoSA) catalyst comprising of atomic Co distributed homogeneously within nitrogen (N)-doped porous carbon (Co-NPC) nanosphere is constructed and utilized as a separator coating in Li-S batteries. The Co-NPC exposes abundant active sites participating in sulfur redox reactions, and remarkable catalytic activity boosting the rapid polysulfide conversions. As a result, Li-S batteries with Co-NPC coating layer realize significantly enhanced specific capacity (1295 mAh·g−1 at 0.2 C), rate capability (753 mAh·g−1 at 3.0 C), and long-life cyclic stability (601 mAh·g−1 after 500 cycles at 1.0 C). Increasing the areal sulfur loading to 6.2 mg·cm−2, an extremely high areal capacity of 7.92 mAh·cm−2 is achieved. Further in situ X-ray diffraction, density functional theory calculations, and secondary ion mass spectrometry confirm the high catalytic capability of CoSA towards reversible polysulfide conversion. This study supplies new insights for adopting single-atom catalyst to upgrade the electrochemical performance of Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    CAS  Google Scholar 

  2. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    CAS  Google Scholar 

  3. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    CAS  Google Scholar 

  4. Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

    CAS  Google Scholar 

  5. Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res., in press, https://doi.org/10.1007/s12274-023-5478-4.

  6. Ma, L. B.; Qian, J.; Li, Y. T.; Cheng, Y. W.; Wang, S. Y.; Wang, Z. W.; Peng, C.; Wu, K. L.; Xu, J.; Manke, I. et al. Binary metal single atom electrocatalysts with synergistic catalytic activity toward high-rate and high areal-capacity lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2208666.

    CAS  Google Scholar 

  7. Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering Janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

    CAS  Google Scholar 

  8. Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano 2023, 17, 1653–1662.

    CAS  Google Scholar 

  9. Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-5215-4.

  10. Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 2203540.

  11. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

    Google Scholar 

  12. Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

    CAS  Google Scholar 

  13. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

    Google Scholar 

  14. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

    CAS  Google Scholar 

  15. Jeong, Y. C.; Kim, J. H.; Nam, S.; Park, C. R.; Yang, S. J. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv. Funct. Mater. 2018, 28, 1707411.

    Google Scholar 

  16. Yao, H. B.; Yan, K.; Li, W. Y.; Zheng, G. Y.; Kong, D. S.; Seh, Z. W.; Narasimhan, V. K.; Liang, Z.; Cui, Y. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy Environ. Sci. 2014, 7, 3381–3390.

    CAS  Google Scholar 

  17. Xu, J.; Tang, W. Q.; Yang, C.; Manke, I.; Chen, N.; Lai, F. L.; Xu, T.; An, S. H.; Liu, H. L.; Zhang, Z. L. et al. A highly conductive COF@CNT electrocatalyst boosting polysulfide conversion for Li-S chemistry. ACS Energy Lett. 2021, 6, 3053–3062.

    CAS  Google Scholar 

  18. Wei, Z. Z.; Zhang, N. X.; Feng, T.; Wu, F.; Zhao, T.; Chen, R. J. A copolymer microspheres-coated separator to enhance thermal stability of lithium-sulfur batteries. Chem. Eng. J. 2022, 430, 132678.

    CAS  Google Scholar 

  19. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    CAS  Google Scholar 

  20. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Power Mater. 2022, 1, 100013.

    Google Scholar 

  21. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  22. Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

    CAS  Google Scholar 

  23. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p−n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    CAS  Google Scholar 

  24. Xie, J.; Li, B. Q.; Peng, H. J.; Song, Y. W.; Zhao, M.; Chen, X.; Zhang, Q.; Huang, J. Q. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903813.

    CAS  Google Scholar 

  25. Ma, C.; Zhang, Y. Q.; Feng, Y. M.; Wang, N.; Zhou, L. J.; Liang, C. P.; Chen, L. B.; Lai, Y. Q.; Ji, X. B.; Yan, C. L. et al. Engineering Fe−N coordination structures for fast redox conversion in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2100171.

    CAS  Google Scholar 

  26. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Kang, Q. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    CAS  Google Scholar 

  27. Ma, F.; Wan, Y. Y.; Wang, X. M.; Wang, X. C.; Liang, J. S.; Miao, Z. P.; Wang, T. Y.; Ma, C.; Lu, G.; Han, J. T. et al. Bifunctional atomically dispersed Mo−N2/C nanosheets boost lithium sulfide deposition/decomposition for stable lithium-sulfur batteries. ACS Nano 2020, 14, 10115–10126.

    CAS  Google Scholar 

  28. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    CAS  Google Scholar 

  29. Wu, K. L.; Zhan, F.; Tu, R. Y.; Cheong, W. C.; Cheng, Y. S.; Zheng, L. R.; Yan, W. S.; Zhang, Q. H.; Chen, Z.; Chen, C. Dopamine polymer derived isolated single-atom site metals/N-doped porous carbon for benzene oxidation. Chem. Commun. 2020, 56, 8916–8919.

    CAS  Google Scholar 

  30. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    CAS  Google Scholar 

  31. Dilpazir, S.; He, H. Y.; Li, Z. H.; Wang, M.; Lu, P. L.; Liu, R. J.; Xie, Z. J.; Gao, D. L.; Zhang, G. J. Cobalt single atoms immobilized N-doped carbon nanotubes for enhanced bifunctional catalysis toward oxygen reduction and oxygen evolution reactions. ACS Appl. Energy Mater. 2018, 1, 3283–3291.

    CAS  Google Scholar 

  32. Guo, D. Y.; Zhang, X.; Liu, M. L.; Yu, Z. S.; Chen, X. A.; Yang, B.; Zhou, Z.; Wang, S. Single Mo-N4 atomic sites anchored on N-doped carbon nanoflowers as sulfur host with multiple immobilization and catalytic effects for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2204458.

    CAS  Google Scholar 

  33. Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

    CAS  Google Scholar 

  34. Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Nat. Acad. Sci. USA 2018, 115, 12692–12697.

    CAS  Google Scholar 

  35. Pan, Y.; Li, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co−N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

    CAS  Google Scholar 

  36. Huang, X.; Wang, Z. L.; Knibbe, R.; Luo, B.; Ahad, S. A.; Sun, D.; Wang, L. Z. Cyclic voltammetry in lithium-sulfur batteries-challenges and opportunities. Energy Technol. 2019, 7, 1801001.

    Google Scholar 

  37. Geng, C. N.; Hua, W. X.; Wang, D. W.; Ling, G. W.; Zhang, C.; Yang, Q. H. Demystifying the catalysis in lithium-sulfur batteries: Characterization methods and techniques. SusMat 2021, 1, 51–65.

    CAS  Google Scholar 

  38. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, B.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  39. Wang, H.; Adams, B. D.; Pan, H. L.; Zhang, L.; Han, K. S.; Estevez, L.; Lu, D. P.; Jia, H. P.; Feng, J.; Guo, J. H. et al. Tailored reaction route by micropore confinement for Li-S batteries operating under lean electrolyte conditions. Adv. Energy Mater. 2018, 8, 1800590.

    Google Scholar 

  40. Shen, C.; Xie, J. X.; Zhang, M.; Andrei, P.; Zheng, J. P.; Hendrickson, M.; Plichta, E. J. A Li−Li2S4 battery with improved discharge capacity and cycle life at low electrolyte/sulfur ratios. J. Power Sources 2019, 414, 412–419.

    CAS  Google Scholar 

  41. Zhan, Y.; Buffa, A.; Yu, L. H.; Xu, Z. J.; Mandler, D. Electrodeposited sulfur and CoxS electrocatalyst on buckypaper as high-performance cathode for Li-S batteries. Nano-Micro Lett. 2020, 12, 141.

    CAS  Google Scholar 

  42. Qian, J.; Wang, F. J.; Li, Y.; Wang, S.; Zhao, Y. Y.; Li, W. L.; Xing, Y.; Deng, L.; Sun, Q.; Li, L. et al. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium-sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Adv. Funct. Mater. 2020, 30, 2000742.

    CAS  Google Scholar 

  43. Xu, J.; Zhang, W. X.; Fan, H. B.; Cheng, F. L.; Su, D. W.; Wang, G. X. Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy 2018, 51, 73–82.

    CAS  Google Scholar 

  44. Yang, J. L.; Cai, D. Q.; Lin, Q. W.; Wang, X. Y.; Fang, Z. Q.; Huang, L.; Wang, Z. J.; Hao, X. G.; Zhao, S. X.; Li, J. et al. Regulating the Li2S deposition by grain boundaries in metal nitrides for stable lithium-sulfur batteries. Nano Energy 2022, 91, 106669.

    CAS  Google Scholar 

  45. Cañas, N. A.; Wolf, S.; Wagner, N.; Friedrich, K. A. In-situ X-ray diffraction studies of lithium-sulfur batteries. J. Power Sources 2013, 226, 313–319.

    Google Scholar 

  46. Hou, W. S.; Feng, P. L.; Guo, X.; Wang, Z. H.; Bai, Z.; Bai, Y.; Wang, G. X.; Sun, K. N. Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium-sulfur batteries. Adv. Mater. 2022, 34, 2202222.

    CAS  Google Scholar 

  47. Weng, W.; Xiao, J. X.; Shen, Y. J.; Liang, X. X.; Lv, T.; Xiao, W. Molten salt electrochemical modulation of iron-carbon-nitrogen for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 24905–24909.

    CAS  Google Scholar 

  48. Peng, L. L.; Wei, Z. Y.; Wan, C. Z.; Li, J.; Chen, Z.; Zhu, D.; Baumann, D.; Liu, H. T.; Allen, C. S.; Xu, X. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 2020, 3, 762–770.

    CAS  Google Scholar 

  49. Zeng, Z. H.; Nong, W.; Li, Y.; Wang, C. X. Universal-descriptors-guided design of single atom catalysts toward oxidation of Li2S in lithium-sulfur batteries. Adv. Sci. 2021, 8, 2102809.

    CAS  Google Scholar 

  50. Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

    CAS  Google Scholar 

  51. Wang, R. R.; Wu, R. B.; Yan, X. X.; Liu, D.; Guo, P. F.; Li, W.; Pan, H. G. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200424.

    CAS  Google Scholar 

  52. Li, Y. J.; Wu, J. B.; Zhang, B.; Wang, W. Y.; Zhang, G. Q.; Seh, Z. W.; Zhang, N.; Sun, J.; Huang, L.; Jiang, J. J. et al. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater. 2020, 30, 250–259.

    Google Scholar 

  53. Zhou, X.; Meng, R. J.; Zhong, N.; Yin, S. F.; Ma, G. Q.; Liang, X. Size-dependent cobalt catalyst for lithium sulfur batteries: From single atoms to nanoclusters and nanoparticles. Small Methods 2021, 5, 2100571.

    CAS  Google Scholar 

  54. Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni−N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

    CAS  Google Scholar 

  55. Wang, J. Y.; Qiu, W. B.; Li, G. R.; Liu, J. B.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Wang, X. et al. Coordinatively deficient single-atom Fe−N−C electrocatalyst with optimized electronic structure for high-performance lithium-sulfur batteries. Energy Storage Mater. 2022, 46, 269–277.

    CAS  Google Scholar 

  56. Kim, J.; Kim, S. J.; Jung, E.; Mok, D. H.; Paidi, V. K.; Lee, J.; Lee, H. S.; Jeoun, Y.; Ko, W.; Shin, H. et al. Atomic structure modification of Fe−N−C catalysts via morphology engineering of graphene for enhanced conversion kinetics of lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2110857.

    CAS  Google Scholar 

  57. Fan, X. Y.; Chen, S.; Gong, W. B.; Meng, X. D.; Jia, Y. C.; Wang, Y. L.; Hong, S.; Zheng, L.; Zheng, L. R.; Bielawski, C. W. et al. A conjugated porous polymer complexed with a single-atom cobalt catalyst as an electrocatalytic sulfur host for enhancing cathode reaction kinetics. Energy Storage Mater. 2021, 41, 14–23.

    Google Scholar 

  58. Li, Y. J.; Chen, G. L.; Mou, J. R.; Liu, Y. Z.; Xue, S. F.; Tan, T.; Zhong, W. T.; Deng, Q.; Li, T.; Hu, J. H. et al. Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2020, 28, 196–204.

    Google Scholar 

  59. Zhang, Y. G.; Liu, J. B.; Wang, J. Y.; Zhao, Y.; Luo, D.; Yu, A. P.; Wang, X.; Chen, Z. W. Engineering oversaturated Fe−N5 multifunctional catalytic sites for durable lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 26622–26629.

    CAS  Google Scholar 

  60. Chen, C. Y.; Peng, H. J.; Hou, T. Z.; Zhai, P. Y.; Li, B. Q.; Tang, C.; Zhu, W. C.; Huang, J. Q.; Zhang, Q. A quinonoid-imine-enriched nanostructured polymer mediator for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606802.

    Google Scholar 

  61. Cai, W. L.; Li, G. R.; Zhang, K. L.; Xiao, G. N.; Wang, C.; Ye, K. F.; Chen, Z. W.; Zhu, Y. C.; Qian, Y. T. Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704865.

    Google Scholar 

  62. Zhang, S. Z.; Zhong, N.; Zhou, X.; Zhang, M. J.; Huang, X. P.; Yang, X. L.; Meng, R. J.; Liang, X. Comprehensive design of the high-sulfur-loading Li-S battery based on MXene nanosheets. Nano-Micro Lett. 2020, 12, 112.

    CAS  Google Scholar 

  63. Lv, X. X.; Lei, T. Y.; Wang, B. J.; Chen, W.; Jiao, Y.; Hu, Y.; Yan, Y. C.; Huang, J. W.; Chu, J. W.; Yan, C. Y. et al. An efficient separator with low Li-ion diffusion energy barrier resolving feeble conductivity for practical lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901800.

    CAS  Google Scholar 

  64. Zhang, L. L.; Chen, X.; Wan, F.; Niu, Z. Q.; Wang, Y. J.; Zhang, Q.; Chen, J. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries. ACS Nano 2018, 12, 9578–9586.

    CAS  Google Scholar 

  65. Jiang, S. F.; Huang, S.; Yao, M. J.; Zhu, J. C.; Liu, L. L.; Niu, Z. Q. Bimetal-organic frameworks derived Co/N-doped carbons for lithium-sulfur batteries. Chin. Chem. Lett. 2020, 31, 2347–2352.

    CAS  Google Scholar 

  66. Tian, Y.; Li, G. R.; Zhang, Y. G.; Luo, D.; Wang, X.; Zhao, Y.; Liu, H.; Ji, P. G.; Du, X. H.; Li, J. D. et al. Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium-sulfur batteries. Adv. Mater. 2020, 32, 1904876.

    CAS  Google Scholar 

  67. Jin, H. G.; Wang, M. Y.; Wen, J. X.; Han, S. H.; Hong, X. J.; Cai, Y. P.; Li, G. L.; Fan, J. C.; Chao, Z. S. Oxygen vacancy-rich mixed-valence cerium MOF: An efficient separator coating to high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 3899–3910.

    CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (No. 22005003), the Natural Science Research Project of Anhui Province Education Department (Nos. 2022AH030046 and 2022AH050334), the Yong Scientific Foundation of Anhui University of Technology for Top Talent (No. DT2100000947), and the Scientific Research Foundation of Anhui University of Technology for Talent Introduction (No. DT19100069). The theoretical simulations were carried out at Shanxi Supercomputing Center of China, and performed on TianHe-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Xu, Dan Luo or Lianbo Ma.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Cheng, Y., Wang, S. et al. Promoting polysulfide conversions via cobalt single-atom catalyst for fast and durable lithium-sulfur batteries. Nano Res. 16, 9335–9343 (2023). https://doi.org/10.1007/s12274-023-5557-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5557-6

Keywords

Navigation