Skip to main content
Log in

Direct observation of the plasmon-enhanced palladium catalysis with single-molecule fluorescence microscopy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Plasmonic nanostructures have been proved effective not only in catalyzing chemical reactions, but also in improving the activity of non-plasmonic photocatalysts. It is essential to reveal the synergy between the plasmonic structure and the non-plasmonic metal photocatalyst for expounding the underlying mechanism of plasmon-enhanced catalysis. Herein, the enhancement of resazurin reduction at the heterostructure of silver nanowire (AgNW) and palladium nanoparticles (PdNPs) is observed in situ by single-molecule fluorescence microscopy. The catalysis mapping results around single AgNW suggest that the catalytic activity of PdNPs is enhanced for ∼ 20 times due to the excitation of localized surface plasmon resonance (LSPR) in the vicinity of the AgNW. This catalysis enhancement is also highly related to the wavelength and polarization of the excitation light. In addition, the palladium catalysis is further enhanced by ∼ 10 times in the vicinity of a roughened AgNW or a AgNW-AgNW nanogap because of the improvement of catalytic hotspots. These findings clarify the contribution of plasmon excitation in palladium catalysis at microscopic scale, which will help to deepen the understanding of the plasmon-enhanced photocatalysis and provide a guideline for developing highly efficient plasmon-based photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Creel, E. B.; Corson, E. R.; Eichhorn, J.; Kostecki, R.; Urban, J. J.; McCloskey, B. D. Directing selectivity of electrochemical carbon dioxide reduction using plasmonics. ACS Energy Lett.2019, 4, 1098–1105.

    CAS  Google Scholar 

  2. Quiroz, J.; Barbosa, E. C. M.; Araujo, T. P.; Fiorio, J. L.; Wang, Y. C.; Zou, Y. C.; Mou, T.; Alves, T. V.; de Oliveira, D. C.; Wang, B. et al. Controlling reaction selectivity over hybrid plasmonic nanocatalysts. Nano Lett.2018, 18, 7289–7297.

    CAS  Google Scholar 

  3. Gellé, A.; Jin, T.; de la Garza, L.; Price, G. D.; Besteiro, L. V.; Moores, A. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem. Rev.2020, 120, 986–1041.

    Google Scholar 

  4. Ninakanti, R.; Dingenen, F.; Borah, R.; Peeters, H.; Verbruggen, S. W. Plasmonic hybrid nanostructures in photocatalysis: Structures, mechanisms, and applications. Top. Curr. Chem.2022, 380, 40.

    CAS  Google Scholar 

  5. Bayles, A.; Tian, S.; Zhou, J. Y.; Yuan, L.; Yuan, Y. G.; Jacobson, C. R.; Farr, C.; Zhang, M.; Swearer, D. F.; Solti, D. et al. Al@TiO2 core-shell nanoparticles for plasmonic photocatalysis. ACS Nano2022, 16, 5839–5850.

    CAS  Google Scholar 

  6. Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev.2021, 50, 2173–2210.

    CAS  Google Scholar 

  7. Dhiman, M. Plasmonic nanocatalysis for solar energy harvesting and sustainable chemistry. J. Mater. Chem. A2020, 8, 10074–10095.

    CAS  Google Scholar 

  8. Linic, S.; Chavez, S.; Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater.2021, 20, 916–924.

    CAS  Google Scholar 

  9. Wang, Y. C.; Zavabeti, A.; Haque, F.; Zhang, B. Y.; Yao, Q. F.; Chen, L.; Chen, D. H.; Hu, Y. H.; Pillai, N.; Liu, Y. K. et al. Plasmon-induced long-lived hot electrons in degenerately doped molybdenum oxides for visible-light-driven photochemical reactions. Mater. Today2022, 55, 21–28.

    CAS  Google Scholar 

  10. Wy, Y.; Jung, H.; Hong, J. W.; Han, S. W. Exploiting plasmonic hot spots in Au-based nanostructures for sensing and photocatalysis. Acc. Chem. Res.2022, 55, 831–843.

    CAS  Google Scholar 

  11. Li, C. P.; Wang, P.; Tian, Y.; Xu, X. L.; Hou, H.; Wang, M. M.; Qi, G. H.; Jin, Y. D. Long-range plasmon field and plasmoelectric effect on catalysis revealed by shell-thickness-tunable pinhole-free Au@SiO2 core-shell nanoparticles: A case study of p-nitrophenol reduction. ACS Catal.2017, 7, 5391–5398.

    CAS  Google Scholar 

  12. Kim, Y.; Smith, J. G.; Jain, P. K. Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles. Nat. Chem.2018, 10, 763–769.

    CAS  Google Scholar 

  13. Zhao, L. B.; Liu, X. X.; Zhang, M.; Liu, Z. F.; Wu, D. Y.; Tian, Z. Q. Surface plasmon catalytic aerobic oxidation of aromatic amines in metal/molecule/metal junctions. J. Phys. Chem. C2016, 120, 944–955.

    CAS  Google Scholar 

  14. Chen, T.; Tong, F. X.; Enderlein, J.; Zheng, Z. K. Plasmon-driven modulation of reaction pathways of individual Pt-modified Au nanorods. Nano Lett.2020, 20, 3326–3330.

    CAS  Google Scholar 

  15. Han, S.; Mullins, C. B. Catalytic reactions on Pd-Au bimetallic model catalysts. Acc. Chem. Res.2021, 54, 379–387.

    CAS  Google Scholar 

  16. Zhang, C.; Wang, K. W.; Xie, K. F.; Han, X. Q.; Ma, W. G.; Li, X. G.; Teng, G. X. Controllable preparation of hierarchical MnCo bimetallic photocatalyst and the effect of atomic ratio on its photocatalytic activity. Chem. Eng. J.2022, 446, 136907.

    CAS  Google Scholar 

  17. Kifle, G. A.; Huang, Y.; Xiang, M. H.; Wang, W. B.; Wang, C.; Li, C. Y.; Li, H. Heterogeneous activation of peroxygens by iron-based bimetallic nanostructures for the efficient remediation of contaminated water. A review. Chem. Eng. J.2022, 442, 136187.

    CAS  Google Scholar 

  18. Zhang, J. K.; Zheng, X. H.; Yu, W. L.; Feng, X.; Qin, Y. Unravelling the synergy in platinum-nickel bimetal catalysts designed by atomic layer deposition for efficient hydrolytic dehydrogenation of ammonia borane. Appl. Catal. B Environ.2022, 306, 121116.

    CAS  Google Scholar 

  19. Long, L. L.; Su, L. L.; Hu, W.; Deng, S. H.; Chen, C.; Shen, F.; Xu, M.; Huang, G. X.; Yang, G. Micro-mechanism of multi-pathway activation peroxymonosulfate by copper-doped cobalt silicate: The dual role of copper. Appl. Catal. B Environ.2022, 309, 121276.

    CAS  Google Scholar 

  20. Han, S.; Shin, K.; Henkelman, G.; Mullins, C. B. Selective oxidation of acetaldehyde to acetic acid on Pd-Au bimetallic model catalysts. ACS Catal.2019, 9, 4360–4368.

    CAS  Google Scholar 

  21. Handoko, A. D.; Wei, F. X.; Jenndy; Yeo, B. S.; Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal.2018, 1, 922–934.

    CAS  Google Scholar 

  22. Pfisterer, J. H. K.; Liang, Y. C.; Schneider, O.; Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature2017, 549, 74–77.

    CAS  Google Scholar 

  23. Li, J. L.; Wang, D. F.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Han, X.; Bai, X. Q.; Chen, R. Y.; Qin, C. B.; Hu, J. Y. et al. The role of surface charges in the blinking mechanisms and quantum-confined Stark effect of single colloidal quantum dots. Nano Res.2022, 15, 7655–7661.

    CAS  Google Scholar 

  24. Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy2019, 4, 60–67.

    CAS  Google Scholar 

  25. Zhang, C. Y.; Jia, F. C.; Li, Z. Y.; Huang, X.; Lu, G. Plasmon-generated hot holes for chemical reactions. Nano Res.2020, 13, 3183–3197.

    Google Scholar 

  26. Chen, Y. Q.; Zhu, Y. M.; Sheng, H. X.; Wang, J.; Zhang, C. Y.; Chen, Y. Q.; Huang, W.; Lu, G. Molecular coadsorption of p-hydroxythiophenol on silver nanoparticles boosts the plasmon-mediated decarboxylation reaction. ACS Catal.2022, 12, 2938–2946.

    CAS  Google Scholar 

  27. Yang, W. C. D.; Wang, C. H.; Fredin, L. A.; Lin, P. A.; Shimomoto, L.; Lezec, H. J.; Sharma, R. Site-selective CO disproportionation mediated by localized surface plasmon resonance excited by electron beam. Nat. Mater.2019, 18, 614–619.

    CAS  Google Scholar 

  28. Vadai, M.; Angell, D. K.; Hayee, F.; Sytwu, K.; Dionne, J. A. In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles. Nat. Commun.2018, 9, 4658.

    Google Scholar 

  29. Li, Y. J.; Adamsen, K. C.; Lammich, L.; Lauritsen, J. V.; Wendt, S. Atomic-scale view of the oxidation and reduction of supported ultrathin FeO islands. ACS Nano2019, 13, 11632–11641.

    CAS  Google Scholar 

  30. Hartman, T.; Geitenbeek, R. G.; Wondergem, C. S.; van der Stam, W.; Weckhuysen, B. M. Operando nanoscale sensors in catalysis: All eyes on catalyst particles. ACS Nano2020, 14, 3725–3735.

    CAS  Google Scholar 

  31. Zhai, X. T.; Zhang, R. X.; Sheng, H. X.; Wang, J.; Zhu, Y. M.; Lu, Z. C.; Li, Z. Y.; Huang, X.; Li, H.; Lu, G. Direct observation of the light-induced exfoliation of molybdenum disulfide sheets in water medium. ACS Nano2021, 15, 5661–5670.

    CAS  Google Scholar 

  32. Lu, Z. C.; Zhai, X. T.; Yi, R. H.; Li, Z. Y.; Zhang, R. X.; Wei, Q.; Xing, G. C.; Lu, G.; Huang, W. Photoluminescence emission during photoreduction of graphene oxide sheets as investigated with single-molecule microscopy. J. Phys. Chem. C2020, 124, 7914–7921.

    CAS  Google Scholar 

  33. Feng, J. D. Electrochemistry probed one molecule at a time. Curr. Opin. Electrochem.2022, 34, 101000.

    CAS  Google Scholar 

  34. Easter, Q. T.; Blum, S. A. Organic and organometallic chemistry at the single-molecule, -particle, and -molecular-catalyst-turnover level by fluorescence microscopy. Acc. Chem. Res.2019, 52, 2244–2255.

    CAS  Google Scholar 

  35. Hamans, R. F.; Kamarudheen, R.; Baldi, A. Single particle approaches to plasmon-driven catalysis. Nanomaterials2020, 10, 2377.

    CAS  Google Scholar 

  36. Cao, J.; Zhang, D. Z.; Xu, W. L. Recent progress in single-molecule fluorescence technology in nanocatalysis. Nano Res.2022, 15, 10316–10327.

    CAS  Google Scholar 

  37. Ye, R.; Zhao, M.; Mao, X. W.; Wang, Z. H.; Garzón, D. A.; Pu, H. T.; Zhao, Z. H.; Chen, P. Nanoscale cooperative adsorption for materials control. Nat. Commun.2021, 12, 4287.

    CAS  Google Scholar 

  38. Kang, J. Y.; Park, S. J.; Kim, J. H.; Chen, P.; Sung, J. Stochastic kinetics of nanocatalytic systems. Phys. Rev. Lett.2021, 126, 126001.

    CAS  Google Scholar 

  39. Zhao, M.; Chen, P. Exploring plasmonic photocatalysis via single-molecule reaction imaging. Nano Lett.2020, 20, 2939–2940.

    CAS  Google Scholar 

  40. Shen, H.; Zhou, X. C.; Zou, N. M.; Chen, P. Single-molecule kinetics reveals a hidden surface reaction intermediate in single-nanoparticle catalysis. J. Phys. Chem. C2014, 118, 26902–26911.

    CAS  Google Scholar 

  41. Zou, N. M.; Chen, G. Q.; Mao, X. W.; Shen, H.; Choudhary, E.; Zhou, X. C.; Chen, P. Imaging catalytic hotspots on single plasmonic nanostructures via correlated super-resolution and electron microscopy. ACS Nano2018, 12, 5570–5579.

    CAS  Google Scholar 

  42. Zou, N. M.; Zhou, X. C.; Chen, G. Q.; Andoy, N. M.; Jung, W.; Liu, G. K.; Chen, P. Cooperative communication within and between single nanocatalysts. Nat. Chem.2018, 10, 607–614.

    CAS  Google Scholar 

  43. Chen, G. Q.; Zou, N. M.; Chen, B.; Sambur, J. B.; Choudhary, E.; Chen, P. Bimetallic effect of single nanocatalysts visualized by superresolution catalysis imaging. ACS Cent Sci2017, 3, 1189–1197.

    CAS  Google Scholar 

  44. Zhang, K. L.; Du, Y. G.; Chen, S. M. Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications. Org. Electron.2015, 26, 380–385.

    CAS  Google Scholar 

  45. Chen, T.; Chen, S.; Zhang, Y. W.; Qi, Y. F.; Zhao, Y. Z.; Xu, W. L.; Zeng, J. Catalytic kinetics of different types of surface atoms on shaped Pd nanocrystals. Angew. Chem., Int. Ed.2016, 55, 1839–1843.

    CAS  Google Scholar 

  46. Su, L.; Lu, G.; Kenens, B.; Rocha, S.; Fron, E.; Yuan, H. F.; Chen, C.; Van Dorpe, P.; Roeffaers, M. B. J.; Mizuno, H. et al. Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy. Nat. Commun.2015, 6, 6287.

    CAS  Google Scholar 

  47. Zhu, Y. M.; Guan, M. D.; Wang, J.; Sheng, H. X.; Chen, Y. Q.; Liang, Y.; Peng, Q. M.; Lu, G. Plasmon-mediated photochemical transformation of inorganic nanocrystals. Appl. Mater. Today2021, 24, 101125.

    Google Scholar 

  48. Shaik, F.; Peer, I.; Jain, P. K.; Amirav, L. Plasmon-enhanced multicarrier photocatalysis. Nano Lett.2018, 18, 4370–4376.

    CAS  Google Scholar 

  49. Laible, F.; Gollmer, D. A.; Dickreuter, S.; Kern, D. P.; Fleischer, M. Continuous reversible tuning of the gap size and plasmonic coupling of bow tie nanoantennas on flexible substrates. Nanoscale2018, 10, 14915–14922.

    CAS  Google Scholar 

  50. Zhang, Q.; Liu, Y. Y.; Nie, Y. X.; Liu, Y.; Ma, Q. Wavelength-dependent surface plasmon coupling electrochemiluminescence biosensor based on sulfur-doped carbon nitride quantum dots for K-RAS gene detection. Anal. Chem.2019, 91, 13780–13786.

    CAS  Google Scholar 

  51. Yu, Y.; Wijesekara, K. D.; Xi, X. X.; Willets, K. A. Quantifying wavelength-dependent plasmonic hot carrier energy distributions at metal/semiconductor interfaces. ACS Nano2019, 13, 3629–3637.

    CAS  Google Scholar 

  52. Wang, R. Y.; Yu, Y. W.; Zhou, S. S.; Li, H. Q.; Wong, H.; Luo, Z. T.; Gan, L.; Zhai, T. Y. Strategies on phase control in transition metal dichalcogenides. Adv. Funct. Mater.2018, 28, 1802473.

    Google Scholar 

  53. Fang, Y. R.; Li, Z. P.; Huang, Y. Z.; Zhang, S. P.; Nordlander, P.; Halas, N. J.; Xu, H. X. Branched silver nanowires as controllable plasmon routers. Nano Lett.2010, 10, 1950–1954.

    CAS  Google Scholar 

  54. Reddy, H.; Wang, K.; Kudyshev, Z.; Zhu, L. X.; Yan, S.; Vezzoli, A.; Higgins, S. J.; Gavini, V.; Boltasseva, A.; Reddy, P. et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science2020, 369, 423–426.

    CAS  Google Scholar 

  55. Zhao, X. Y.; Wen, J. H.; Zhu, A. N.; Cheng, M. Y.; Zhu, Q.; Zhang, X. L.; Wang, Y. X.; Zhang, Y. J. Manipulation and applications of hotspots in nanostructured surfaces and thin films. Nanomaterials2020, 10, 1667.

    CAS  Google Scholar 

  56. Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev.2017, 46, 4042–4076.

    CAS  Google Scholar 

  57. Sun, M. M.; Qian, H. M.; Liu, J.; Li, Y. C.; Pang, S. P.; Xu, M.; Zhang, J. T. A flexible conductive film prepared by the oriented stacking of Ag and Au/Ag alloy nanoplates and its chemically roughened surface for explosive SERS detection and cell adhesion. RSC Adv.2017, 7, 7073–7078.

    CAS  Google Scholar 

  58. Li, Z. Y.; Huang, X.; Lu, G. Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C2020, 8, 3956–3969.

    CAS  Google Scholar 

  59. Toyouchi, S.; Wolf, M.; Nakao, Y.; Fujita, Y.; Inose, T.; Fortuni, B.; Hirai, K.; Hofkens, J.; De Feyter, S.; Hutchison, J. et al. Controlled fabrication of optical signal input/output sites on plasmonic nanowires. Nano Lett.2020, 20, 2460–2467.

    CAS  Google Scholar 

  60. Lu, G.; Yuan, H. F.; Su, L.; Kenens, B.; Fujita, Y.; Chamtouri, M.; Pszona, M.; Fron, E.; Waluk, J.; Hofkens, J. et al. Plasmon-mediated surface engineering of silver nanowires for surface-enhanced Raman scattering. J. Phys. Chem. Lett.2017, 8, 2774–2779.

    CAS  Google Scholar 

  61. Reguera, J.; Langer, J.; Jiménez de Aberasturi, D.; Liz-Marzán, L. M. Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem. Soc. Rev.2017, 46, 3866–3885.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11974180) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Nos. KYCX21_1095 and SJCX21_0472).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Huang or Gang Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Devasenathipathy, R., Wang, J. et al. Direct observation of the plasmon-enhanced palladium catalysis with single-molecule fluorescence microscopy. Nano Res. 16, 8817–8826 (2023). https://doi.org/10.1007/s12274-023-5548-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5548-7

Keywords

Navigation