Skip to main content
Log in

Stretchable, breathable, and washable epidermal electrodes based on microfoam reinforced ultrathin conductive nanocomposites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stretchable epidermal electronics allow conformal interactions with the human body for emerging applications in wearable health monitoring and therapy. Stretchable devices are commonly constructed on submillimeter-thick elastomer substrates with limited moisture permeability, thereby leading to unpleasant sensations during long-term attachment. Although the ultrathin elastomer membrane may address this problem, the mechanical robustness is essentially lost for direct manipulations and repetitive uses. Here, we report a stretchable, breathable, and washable epidermal electrode of microfoam reinforced ultrathin conductive nanocomposite (MRUCN). The new architecture involves ultrathin conductive silver nanowire nanocomposite features supported on a porous elastomeric microfoam substrate, which exhibits high moisture permeability for pleasant perceptions during epidermal applications. As-prepared epidermal electrodes show excellent electronic conductivity (8440 S·cm−1), high feature resolution (∼ 50 µm), decent stretchability, and excellent durability. In addition, the MRUCN retains stable electrical properties during washing to meet the hygiene requirements for repetitive uses. The successful implementation in an integrated electronic patch demonstrates the practical suitability of MRUCN for a broad range of epidermal electronic devices and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

    CAS  Google Scholar 

  2. Wang, S. H.; Oh, J. Y.; Xu, J.; Tran, H.; Bao, Z. N. Skin-inspired electronics: An emerging paradigm. Acc. Chem. Res. 2018, 51, 1033–1045.

    CAS  Google Scholar 

  3. Chortos, A.; Liu, J.; Bao, Z. N. Pursuing prosthetic electronic skin. Nat. Mater 2016, 15, 937–950.

    CAS  Google Scholar 

  4. Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D. H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 2016, 28, 4203–4218.

    CAS  Google Scholar 

  5. Chung, H. U.; Kim, B. H.; Lee, J. Y.; Lee, J.; Xie, Z. Q.; Ibler, E. M.; Lee, K.; Banks, A.; Jeong, J. Y.; Kim, J. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 2019, 363, eaau0780.

    CAS  Google Scholar 

  6. Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

    CAS  Google Scholar 

  7. Wang, S. L.; Nie, Y. Y.; Zhu, H. Y.; Xu, Y. R.; Cao, S. T.; Zhang, J. X.; Li, Y. Y.; Wang, J. H.; Ning, X. H.; Kong, D. S. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 2022, 8, eabl5511.

    CAS  Google Scholar 

  8. Yao, G.; Mo, X. Y.; Yin, C. H.; Lou, W. B.; Wang, Q.; Huang, S. R.; Mao, L. N.; Chen, S. H.; Zhao, K. N.; Pan, T. S. et al. A programmable and skin temperature-activated electromechanical synergistic dressing for effective wound healing. Sci. Adv. 2022, 8, eabl8379.

    CAS  Google Scholar 

  9. Bang, S.; Tahk, D.; Choi, Y. H.; Lee, S.; Lim, J.; Lee, S. R.; Kim, B. S.; Kim, H. N.; Hwang, N. S.; Jeon, N. L. 3D microphysiological system-inspired scalable vascularized tissue constructs for regenerative medicine (Adv. Funct. Mater. 1/2022). Adv. Funct. Mater. 2022, 32, 2270001.

    Google Scholar 

  10. Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J. S.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human—machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839–6846.

    CAS  Google Scholar 

  11. Wang, M.; Yan, Z.; Wang, T.; Cai, P. Q.; Gao, S. Y.; Zeng, Y.; Wan, C. J.; Wang, H.; Pan, L.; Yu, J. C. et al. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 2020, 3, 563–570.

    Google Scholar 

  12. Zhao, H. X.; Zhou, Y. L.; Cao, S. T.; Wang, Y. F.; Zhang, J. X.; Feng, S. X.; Wang, J. C.; Li, D. C.; Kong, D. S. Ultrastretchable and washable conductive microtextiles by coassembly of silver nanowires and elastomeric microfibers for epidermal human—machine interfaces. ACS Mater. Lett. 2021, 3, 912–920.

    CAS  Google Scholar 

  13. Frederick Frasch, H.; Bunge, A. L. The transient dermal exposure II: Post-exposure absorption and evaporation of volatile compounds. J. Pharm. Sci. 2015, 104, 1499–1507.

    Google Scholar 

  14. Pinnagoda, J.; Tupkek, R. A.; Agner, T.; Serup, J. Guidelines for transepidermal water loss (TEWL) measurement: A report from the standardization group of the European society of contact dermatitis. Contact Dermatitis 1990, 22, 164–178.

    CAS  Google Scholar 

  15. Ma, Z. J.; Huang, Q. Y.; Xu, Q.; Zhuang, Q. N.; Zhao, X.; Yang, Y. H.; Qiu, H.; Yang, Z. L.; Wang, C.; Chai, Y. et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 2021, 20, 859–868.

    CAS  Google Scholar 

  16. Wang, Y. F.; Wang, J.; Cao, S. T.; Kong, D. S. A stretchable and breathable form of epidermal device based on elastomeric nanofibre textiles and silver nanowires. J. Mater. Chem. C 2019, 7, 9748–9755.

    CAS  Google Scholar 

  17. Li, Q. S.; Chen, G.; Cui, Y. J.; Ji, S. B.; Liu, Z. Y.; Wan, C. J.; Liu, Y. P.; Lu, Y. H.; Wang, C. X.; Zhang, N. et al. Highly thermal-wet comfortable and conformal silk-based electrodes for on-skin sensors with sweat tolerance. ACS Nano 2021, 15, 9955–9966.

    CAS  Google Scholar 

  18. Sun, B. H.; McCay, R. N.; Goswami, S.; Xu, Y. D.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 2018, 30, 1804327.

    Google Scholar 

  19. Li, Y. Y.; Wang, S. L.; Zhang, J. X.; Ma, X. H.; Cao, S. T.; Sun, Y. P.; Feng, S. X.; Fang, T.; Kong, D. S. A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for epidermal electronics. ACS Appl. Mater. Interfaces 2022, 14, 13713–13721.

    CAS  Google Scholar 

  20. Weng, W.; Chen, P. N.; He, S. S.; Sun, X. M.; Peng, H. S. Smart electronic textiles. Angew. Chem., Int. Ed. 2016, 55, 6140–6169.

    CAS  Google Scholar 

  21. Ma, X. H.; Zhang, M. H.; Zhang, J. X.; Wang, S. L.; Cao, S. T.; Li, Y. Y.; Hu, G. H.; Kong, D. S. Highly permeable and ultrastretchable liquid metal micromesh for skin-attachable electronics. ACS Mater. Lett. 2022, 4, 634–641.

    CAS  Google Scholar 

  22. Jin, H.; Matsuhisa, N.; Lee, S.; Abbas, M.; Yokota, T.; Someya, T. Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv. Mater. 2017, 29, 1605848.

    Google Scholar 

  23. Kwon, C.; Seong, D.; Ha, J.; Chun, D.; Bae, J. H.; Yoon, K.; Lee, M.; Woo, J.; Won, C.; Lee, S. et al. Wearable electronics: Self-bondable and stretchable conductive composite fibers with spatially controlled percolated Ag nanoparticle networks: Novel integration strategy for wearable electronics (Adv. Funct. Mater. 49/2020). Adv. Funct. Mater. 2020, 30, 2070321.

    CAS  Google Scholar 

  24. Fan, Y. J.; Yu, P. T.; Liang, F.; Li, X.; Li, H. Y.; Liu, L.; Cao, J. W.; Zhao, X. J.; Wang, Z. L.; Zhu, G. Highly conductive, stretchable, and breathable epidermal electrode based on hierarchically interactive nano-network. Nanoscale 2020, 12, 16053–16062.

    CAS  Google Scholar 

  25. Jiang, Z.; Nayeem, O. G.; Fukuda, K.; Ding, S.; Jin, H.; Yokota, T.; Inoue, D.; Hashizume, D.; Someya, T. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv. Mater. 2019, 31, 1903446.

    Google Scholar 

  26. Wu, Y. Y.; Mechael, S. S.; Lerma, C.; Carmichael, R. S.; Carmichael, T. B. Stretchable ultrasheer fabrics as semitransparent electrodes for wearable light-emitting e-textiles with changeable display patterns. Matter 2020, 2, 882–895.

    Google Scholar 

  27. Li, Q. S.; Ding, C.; Yuan, W.; Xie, R. J.; Zhou, X. M.; Zhao, Y.; Yu, M.; Yang, Z. J.; Sun, J.; Tian, Q. et al. Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv. Fiber Mater. 2021, 3, 302–311.

    CAS  Google Scholar 

  28. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    CAS  Google Scholar 

  29. Cassidy, P. E.; Aminabhavi, T. M.; Thompson, C. M. Water permeation through elastomers and plastics. Rubber Chem. Technol. 1983, 56, 594–618.

    CAS  Google Scholar 

  30. van Amerongen, G. J. The permeability of different rubbers to gases and its relation to diffusivity and solubility. J. Appl. Phys. 1946, 17, 972–985.

    CAS  Google Scholar 

  31. Yang, X. Q.; Li, L. H.; Wang, S. Q.; Lu, Q. F.; Bai, Y. Y.; Sun, F. Q.; Li, T.; Li, Y.; Wang, Z. H.; Zhao, Y. Y. et al. Ultrathin, stretchable, and breathable epidermal electronics based on a facile bubble blowing method. Adv. Electron. Mater. 2020, 6, 2000306.

    CAS  Google Scholar 

  32. Nawrocki, R. A.; Jin, H.; Lee, S.; Yokota, T.; Sekino, M.; Someya, T. Self-adhesive and ultra-conformable, sub-300 nm dry thin-film electrodes for surface monitoring of biopotentials. Adv. Funct. Mater. 2018, 28, 1803279.

    Google Scholar 

  33. Zhao, Y.; Zhang, S.; Yu, T. H.; Zhang, Y.; Ye, G.; Cui, H.; He, C. J.; Jiang, W. C.; Zhai, Y.; Lu, C. M. et al. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat. Commun. 2021, 12, 4880.

    CAS  Google Scholar 

  34. Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L. K.; Li, M.; Wang, S. D.; Ma, R.; Jin, S. H.; Kang, Z. et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 2013, 25, 2773–2778.

    CAS  Google Scholar 

  35. Kabiri Ameri, S.; Ho, R.; Jang, H.; Tao, L.; Wang, Y. H.; Wang, L.; Schnyer, D. M.; Akinwande, D.; Lu, N. S. Graphene electronic tattoo sensors. ACS Nano 2017, 11, 7634–7641.

    CAS  Google Scholar 

  36. Jang, K. I.; Chung, H. U.; Xu, S.; Lee, C. H.; Luan, H. W.; Jeong, J.; Cheng, H. Y.; Kim, G. T.; Han, S. Y.; Lee, J. W. et al. Soft network composite materials with deterministic and bio-inspired designs. Nat. Commun. 2015, 6, 6566.

    CAS  Google Scholar 

  37. Jang, K. I.; Han, S. Y.; Xu, S.; Mathewson, K. E.; Zhang, Y. H.; Jeong, J. W.; Kim, G. T.; Webb, R. C.; Lee, J. W.; Dawidczyk, T. J. et al. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 2014, 5, 4779.

    CAS  Google Scholar 

  38. Hsu, P. C.; Liu, X. G.; Liu, C.; Xie, X.; Lee, H. R.; Welch, A. J.; Zhao, T.; Cui, Y. Personal thermal management by metallic nanowire-coated textile. Nano Lett. 2015, 15, 365–371.

    CAS  Google Scholar 

  39. Lee, Y.; Bae, S.; Hwang, B.; Schroeder, M.; Lee, Y.; Baik, S. Considerably improved water and oil washability of highly conductive stretchable fibers by chemical functionalization with fluorinated silane. J. Mater. Chem. C 2019, 7, 12297–12305.

    CAS  Google Scholar 

  40. Zhou, Y. L.; Zhao, C. S.; Wang, J. C.; Li, Y. Z.; Li, C. X.; Zhu, H. Y.; Feng, S. X.; Cao, S. T.; Kong, D. S. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater. Lett. 2019, 1, 511–518.

    CAS  Google Scholar 

  41. Tierney, T. B.; Rasmuson, A. C.; Hudson, S. P. Size and shape control of micron-sized salicylic acid crystals during antisolvent crystallization. Org. Process Res. Dev. 2017, 21, 1732–1740.

    CAS  Google Scholar 

  42. Chortos, A.; Koleilat, G. I.; Pfattner, R.; Kong, D. S.; Lin, P.; Nur, R.; Lei, T.; Wang, H. L.; Liu, N.; Lai, Y. C. et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 2016, 28, 4441–4448.

    CAS  Google Scholar 

  43. Khan, U.; May, P.; Porwal, H.; Nawaz, K.; Coleman, J. N. Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene. ACS Appl. Mater. Interfaces 2013, 5, 1423–1428.

    CAS  Google Scholar 

  44. Zhao, C. S.; Zhou, Y. L.; Gu, S. Q.; Cao, S. T.; Wang, J. C.; Zhang, M. H.; Wu, Y. Z.; Kong, D. S. Fully screen-printed, multicolor, and stretchable electroluminescent displays for epidermal electronics. ACS Appl. Mater. Interfaces 2020, 12, 47902–47910.

    CAS  Google Scholar 

  45. Diridollou, S.; Patat, F.; Gens, F.; Vaillant, L.; Black, D.; Lagarde, J. M.; Gall, Y.; Berson, M. In vivo model of the mechanical properties of the human skin under suction. Skin Res. Technol. 2000, 6, 214–221.

    Google Scholar 

  46. Lu, H. F.; Zhang, D.; Ren, X. G.; Liu, J.; Choy, W. C. H. Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode. ACS Nano 2014, 8, 10980–10987.

    CAS  Google Scholar 

  47. Liang, J. J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X. H.; Chen, Y. S.; Pei, Q. B. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 2014, 8, 1590–1600.

    CAS  Google Scholar 

  48. Song, T. B.; Chen, Y.; Chung, C. H.; Yang, Y.; Bob, B.; Duan, H. S.; Li, G.; Tu, K. N.; Huang, Y.; Yang, Y. Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 2014, 8, 2804–2811.

    CAS  Google Scholar 

  49. Lin, Y.; Li, Q. S.; Ding, C.; Wang, J. Y.; Yuan, W.; Liu, Z. Y.; Su, W. M.; Cui, Z. High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Res. 2022, 15, 4590–4598.

    CAS  Google Scholar 

  50. Jeong, W.; Lee, S.; Yoo, S.; Park, S.; Choi, H.; Bae, J.; Lee, Y.; Woo, K.; Choi, J. H.; Lee, S. A hierarchical metal nanowire network structure for durable, cost-effective, stretchable, and breathable electronics. ACS Appl. Mater. Interfaces 2021, 13, 60425–60432.

    CAS  Google Scholar 

  51. Zhou, Y. L.; Cao, S. T.; Wang, J.; Zhu, H. Y.; Wang, J. C.; Yang, S. N.; Wang, X.; Kong, D. S. Bright stretchable electroluminescent devices based on silver nanowire electrodes and high-k thermoplastic elastomers. ACS Appl. Mater. Interfaces 2018, 10, 44760–44767.

    CAS  Google Scholar 

  52. Xu, B. X.; Akhtar, A.; Liu, Y. H.; Chen, H.; Yeo, W. H.; Park, S. I.; Boyce, B.; Kim, H.; Yu, J.; Lai, H. Y. et al. An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv. Mater. 2016, 28, 4462–4471.

    CAS  Google Scholar 

  53. Kleiner, S. M. Water: An essential but overlooked nutrient. J. Am. Diet. Assoc. 1999, 99, 200–206.

    CAS  Google Scholar 

  54. Hon, K. L. E.; Wong, K. Y.; Leung, T. F.; Chow, C. M.; Ng, P. C. Comparison of skin hydration evaluation sites and correlations among skin hydration, transepidermal water loss, SCORAD index, Nottingham Eczema Severity Score, and quality of life in patients with atopic dermatitis. Am. J. Clin. Dermatol. 2008, 9, 45–50.

    Google Scholar 

  55. Yao, S. S.; Myers, A.; Malhotra, A.; Lin, F. Y.; Bozkurt, A.; Muth, J. F.; Zhu, Y. A wearable hydration sensor with conformal nanowire electrodes. Adv. Healthc. Mater. 2017, 6, 1601159.

    Google Scholar 

  56. Hurley, M. V.; Bearne, L. M. Non-exercise physical therapies for musculoskeletal conditions. Best Pract. Res. Clin. Rheumatol. 2008, 22, 419–433.

    Google Scholar 

  57. Lim, S.; Son, D.; Kim, J.; Lee, Y. B.; Song, J. K.; Choi, S.; Lee, D. J.; Kim, J. H.; Lee, M.; Hyeon, T. et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 2015, 25, 375–383.

    CAS  Google Scholar 

  58. Sarzi-Puttini, P.; Cimmino, M. A.; Scarpa, R.; Caporali, R.; Parazzini, F.; Zaninelli, A.; Atzeni, F.; Canesi, B. Osteoarthritis: An overview of the disease and its treatment strategies. Semin. Arthritis Rheum. 2005, 35, 1–10.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China (No. BE2019002), Key Research and Development Program of Hebei Provence (No. 19251804D), and High-Level Entrepreneurial and Innovative Talents Program of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongchan Li or Desheng Kong.

Electronic Supplementary Material

12274_2023_5537_MOESM1_ESM.pdf

Stretchable, breathable, and washable epidermal electrodes based on microfoam reinforced ultrathin conductive nanocomposites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Lin, Y., Ma, X. et al. Stretchable, breathable, and washable epidermal electrodes based on microfoam reinforced ultrathin conductive nanocomposites. Nano Res. 16, 10412–10419 (2023). https://doi.org/10.1007/s12274-023-5537-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5537-x

Keywords

Navigation