Skip to main content
Log in

Breaking the symmetry of colloidal 2D nanoplatelets: Twist induced quantum coupling

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Twist provides a new degree of freedom for nanomaterial modifications, which can provide novel physical properties. Here, colloidal two-dimensional (2D) twisted CdSe nanoplatelets (NPLs) are successfully fabricated and their morphology can change from totally flat to edge-twisted, and then to middle-twisted with prolonged reaction time. By combining experiments and corresponding theoretical analyses, we have established the length-dependent relationships between the surface energy and twist, with a critical lateral dimension of 30 nm. We found that the defects formed during the synthesis process play a vital role in generating intense stress that develops a strong torsion tensor around the edges, resulting in edge-twisted and final middle-twisted NPLs. Furthermore, due to the geometric asymmetry of twisted NPLs, the dissymmetry factor of single particle NPLs can reach up to 0.334. Specifically, quantum coupling occurs in middle-twisted NPLs by twisting one parent NPL into two daughter NPLs, which are structurally and electronically coupled. This work not only further deepens our understanding of the twist mechanism of 2D NPLs during colloidal synthesis, but also opens a pathway for applications using twistronics and quantum technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, P. X.; Ding, Y.; Mai, W. J.; Hughes, W. L.; Lao, C. S.; Wang, Z. L. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 2005, 309, 1700–1704.

    CAS  Google Scholar 

  2. Zhu, J.; Peng, H. L.; Marshall, A. F.; Barnett, D. M.; Nix, W. D.; Cui, Y. Formation of chiral branched nanowires by the Eshelby Twist. Nat. Nanotechnol. 2008, 3, 477–481.

    CAS  Google Scholar 

  3. Srivastava, S.; Santos, A.; Critchley, K.; Kim, K. S.; Podsiadlo, P.; Sun, K.; Lee, J.; Xu, C. L.; Lilly, G. D.; Glotzer, S. C. et al. Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science 2010, 327, 1355–1359.

    CAS  Google Scholar 

  4. Cao, Y.; Rodan-Legrain, D.; Rubies-Bigorda, O.; Park, J. M.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Tunable correlated states and spin-polarized phases in twisted bilayer—bilayer graphene. Nature 2020, 583, 215–220.

    CAS  Google Scholar 

  5. Turkel, S.; Swann, J.; Zhu, Z. Y.; Christos, M.; Watanabe, K.; Taniguchi, T.; Sachdev, S.; Scheurer, M. S.; Kaxiras, E.; Dean, C. R. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 2022, 376, 193–199.

    CAS  Google Scholar 

  6. Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497, 598–602.

    CAS  Google Scholar 

  7. Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427–1430.

    CAS  Google Scholar 

  8. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    CAS  Google Scholar 

  9. Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

    CAS  Google Scholar 

  10. Mishchenko, A.; Tu, J. S.; Cao, Y.; Gorbachev, R. V.; Wallbank, J. R.; Greenaway, M. T.; Morozov, V. E.; Morozov, S. V.; Zhu, M. J.; Wong, S. L. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 2014, 9, 808–813.

    CAS  Google Scholar 

  11. Hsu, W. T.; Zhao, Z. A.; Li, L. J.; Chen, C. H.; Chiu, M. H.; Chang, P. S.; Chou, Y. C.; Chang, W. H. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 2014, 8, 2951–2958.

    CAS  Google Scholar 

  12. Ribeiro-Palau, R.; Zhang, C. J.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. R. Twistable electronics with dynamically rotatable heterostructures. Science 2018, 361, 690–693.

    CAS  Google Scholar 

  13. Kang, K.; Lee, K. H.; Han, Y. M.; Gao, H.; Xie, S. E.; Muller, D. A.; Park, J. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 2017, 550, 229–233.

    Google Scholar 

  14. Pun, A. B.; Mazzotti, S.; Mule, A. S.; Norris, D. J. Understanding discrete growth in semiconductor nanocrystals: Nanoplatelets and magic-sized clusters. Acc. Chem. Res. 2021, 54, 1545–1554.

    CAS  Google Scholar 

  15. Ithurria, S.; Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.

    CAS  Google Scholar 

  16. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

    CAS  Google Scholar 

  17. Ithurria, S.; Talapin, D. V. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 2012, 134, 18585–18590.

    CAS  Google Scholar 

  18. Lhuillier, E.; Pedetti, S.; Ithurria, S.; Nadal, B.; Heuclin, H.; Dubertret, B. Two-dimensional colloidal metal chalcogenides semiconductors: Synthesis, spectroscopy, and applications. Acc. Chem. Res. 2015, 48, 22–30.

    CAS  Google Scholar 

  19. Zhang, F. J.; Wang, S. J.; Wang, L.; Lin, Q. L.; Shen, H. B.; Cao, W. R.; Yang, C. C.; Wang, H. Z.; Yu, L.; Du, Z. L. et al. Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets. Nanoscale 2016, 8, 12182–12188.

    CAS  Google Scholar 

  20. Wen, Z. L.; Liu, P.; Ma, J. R.; Jia, S. Q.; Xiao, X. T.; Ding, S. H.; Tang, H. D.; Yang, H. C.; Zhang, C. J.; Qu, X. W. et al. High-performance ultrapure green CdSe/CdS core/crown nanoplatelet light-emitting diodes by suppressing nonradiative energy transfer. Adv. Electron. Mater. 2021, 7, 2000965.

    CAS  Google Scholar 

  21. Li, Z.; Qin, H. Y.; Guzun, D.; Benamara, M.; Salamo, G.; Peng, X. G. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 2012, 5, 337–351.

    CAS  Google Scholar 

  22. She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Demortière, A.; Schaller, R. D.; Pelton, M.; Talapin, D. V. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 2014, 14, 2772–2777.

    CAS  Google Scholar 

  23. Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 2016, 116, 10934–10982.

    CAS  Google Scholar 

  24. Bouet, C.; Mahler, B.; Nadal, B.; Abecassis, B.; Tessier, M. D.; Ithurria, S.; Xu, X. Z.; Dubertret, B. Two-dimensional growth of CdSe nanocrystals, from nanoplatelets to nanosheets. Chem. Mater. 2013, 25, 639–645.

    CAS  Google Scholar 

  25. Hutter, E. M.; Bladt, E.; Goris, B.; Pietra, F.; van der Bok, J. C.; Boneschanscher, M. P.; de Mello Donegá, C.; Bals, S.; Vanmaekelbergh, D. Conformal and atomic characterization of ultrathin CdSe platelets with a helical shape. Nano Lett. 2014, 14, 6257–6262.

    CAS  Google Scholar 

  26. Jana, S.; de Frutos, M.; Davidson, P.; Abécassis, B. Ligand-induced twisting of nanoplatelets and their self-assembly into chiral ribbons. Sci. Adv. 2017, 3, e1701483.

    Google Scholar 

  27. Vasiliev, R. B.; Lazareva, E. P.; Karlova, D. A.; Garshev, A. V.; Yao, Y. Z.; Kuroda, T.; Gaskov, A. M.; Sakoda, K. Spontaneous folding of CdTe nanosheets induced by ligand exchange. Chem. Mater. 2018, 30, 1710–1717.

    CAS  Google Scholar 

  28. Kim, W. D.; Yoon, D. E.; Kim, D.; Koh, S.; Bae, W. K.; Chae, W. S.; Lee, D. C. Stacking of colloidal CdSe nanoplatelets into twisted ribbon superstructures: Origin of twisting and its implication in optical properties. J. Phys. Chem. C 2019, 123, 9445–9453.

    CAS  Google Scholar 

  29. Liu, Y. Y.; Rowell, N.; Willis, M.; Zhang, M.; Wang, S. L.; Fan, H. S.; Huang, W.; Chen, X. Q.; Yu, K. Photoluminescent colloidal nanohelices self-assembled from CdSe magic-size clusters via nanoplatelets. J. Phys. Chem. Lett. 2019, 10, 2794–2801.

    CAS  Google Scholar 

  30. Guillemeney, L.; Lermusiaux, L.; Landaburu, G.; Wagnon, B.; Abécassis, B. Curvature and self-assembly of semi-conducting nanoplatelets. Commun. Chem. 2022, 5, 7.

    CAS  Google Scholar 

  31. Castro, N.; Bouet, C.; Ithurria, S.; Lequeux, N.; Constantin, D.; Levitz, P.; Pontoni, D.; Abécassis, B. Insights into the formation mechanism of CdSe nanoplatelets using in situ X-ray scattering. Nano Lett. 2019, 19, 6466–6474.

    CAS  Google Scholar 

  32. Po, H.; Dabard, C.; Roman, B.; Reyssat, E.; Bico, J.; Baptiste, B.; Lhuillier, E.; Ithurria, S. Chiral helices formation by self-assembled molecules on semiconductor flexible substrates. ACS Nano 2022, 11, 2901–2909.

    Google Scholar 

  33. Di Giacomo, A.; Rodà, C.; Khan, A. H.; Moreels, I. Colloidal synthesis of laterally confined blue-emitting 3. 5 monolayer CdSe nanoplatelets. Chem. Mater. 2020, 32, 9260–9267.

    CAS  Google Scholar 

  34. Singh, S.; Tomar, R.; Ten Brinck, S.; De Roo, J.; Geiregat, P.; Martins, J. C.; Infante, I.; Hens, Z. Colloidal CdSe nanoplatelets, a model for surface chemistry/optoelectronic property relations in semiconductor nanocrystals. J. Am. Chem. Soc. 2018, 140, 13292–13300.

    CAS  Google Scholar 

  35. Yeom, J.; Yeom, B.; Chan, H.; Smith, K. W.; Dominguez-Medina, S.; Bahng, J. H.; Zhao, G. P.; Chang, W. S.; Chang, S. J.; Chuvilin, A. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 2015, 14, 66–72.

    CAS  Google Scholar 

  36. Wang, P. P.; Yu, S. J.; Govorov, A. O.; Ouyang, M. Cooperative expression of atomic chirality in inorganic nanostructures. Nat. Commun. 2017, 8, 14312.

    CAS  Google Scholar 

  37. Vinegrad, E.; Vestler, D.; Ben-Moshe, A.; Barnea, A. R.; Markovich, G.; Cheshnovsky, O. Circular dichroism of single particles. ACS Photonics 2018, 5, 2151–2159.

    CAS  Google Scholar 

  38. Sang, Y. T.; Han, J. L.; Zhao, T. H.; Duan, P. F.; Liu, M. H. Circularly polarized luminescence in nanoassemblies: Generation, amplification, and application. Adv. Mater. 2020, 32, 1900110.

    CAS  Google Scholar 

  39. Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.

    CAS  Google Scholar 

  40. Yang, G. L.; Kazes, M.; Oron, D. Chiral 2D colloidal semiconductor quantum wells. Adv. Funct. Mater. 2018, 28, 1802012.

    Google Scholar 

  41. Cui, J. B.; Panfil, Y. E.; Koley, S.; Shamalia, D.; Waiskopf, N.; Remennik, S.; Popov, I.; Oded, M.; Banin, U. Colloidal quantum dot molecules manifesting quantum coupling at room temperature. Nat. Commun. 2019, 10, 5401.

    CAS  Google Scholar 

  42. Kuo, Y. H.; Lee, Y. K.; Ge, Y. S.; Ren, S.; Roth, J. E.; Kamins, T. I.; Miller, D. A. B.; Harris, J. S. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature 2005, 437, 1334–1336.

    CAS  Google Scholar 

  43. Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. Spectroscopy of single CdSe nanoplatelets. ACS Nano 2012, 6, 6751–6758.

    CAS  Google Scholar 

  44. Tessier, M. D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Dubertret, B. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. Nano Lett. 2013, 13, 3321–3328.

    CAS  Google Scholar 

  45. Amgar, D.; Yang, G. L.; Tenne, R.; Oron, D. Higher-order photon correlation as a tool to study exciton dynamics in quasi-2D nanoplatelets. Nano Lett. 2019, 19, 8741–8748.

    CAS  Google Scholar 

  46. Teitelboim, A.; Meir, N.; Kazes, M.; Oron, D. Colloidal double quantum dots. Acc. Chem. Res. 2016, 19, 902–910.

    Google Scholar 

  47. Choi, J. J.; Luria, J.; Hyun, B. R.; Bartnik, A. C.; Sun, L. F.; Lim, Y. F.; Marohn, J. A.; Wise, F. W.; Hanrath, T. Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. Nano Lett. 2010, 14, 1805–1811.

    Google Scholar 

  48. Park, Y. S.; Bae, W. K.; Pietryga, J. M.; Klimov, V. I. Auger recombination of biexcitons and negative and positive trions in individual quantum dots. ACS Nano 2014, 8, 7288–7296.

    CAS  Google Scholar 

  49. Shornikova, E. V.; Yakovlev, D. R.; Biadala, L.; Crooker, S. A.; Belykh, V. V.; Kochiev, M. V.; Kuntzmann, A.; Nasilowski, M.; Dubertret, B.; Bayer, M. Negatively charged excitons in CdSe nanoplatelets. Nano Lett. 2020, 20, 1370–1377.

    CAS  Google Scholar 

  50. Ayari, S.; Quick, M. T.; Owschimikow, N.; Christodoulou, S.; Bertrand, G. H. V.; Artemyev, M.; Moreels, I.; Woggon, U.; Jaziri, S.; Achtstein, A. W. Tuning Trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for Trion properties. Nanoscale 2020, 12, 14448–14458.

    CAS  Google Scholar 

  51. Li, J. L.; Wang, D. F.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Han, X.; Bai, X. Q.; Chen, R. Y.; Qin, C. B.; Hu, J. Y. et al. The role of surface charges in the blinking mechanisms and quantum-confined Stark effect of single colloidal quantum dots. Nano Res. 2022, 15, 7655–7661.

    CAS  Google Scholar 

  52. Peng, L. T.; Otten, M.; Hazarika, A.; Coropceanu, I.; Cygorek, M.; Wiederrecht, G. P.; Hawrylak, P.; Talapin, D. V.; Ma, X. D. Bright Trion emission from semiconductor nanoplatelets. Phys. Rev. Mater. 2020, 4, 056006.

    CAS  Google Scholar 

  53. Cragg, G. E.; Efros, A. L. Suppression of auger processes in confined structures. Nano Lett. 2010, 10, 313–317.

    CAS  Google Scholar 

  54. Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.; Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A. Bimolecular auger recombination of electron-hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 2013, 4, 3574–3578.

    CAS  Google Scholar 

  55. Jia, G. H.; Sitt, A.; Hitin, G. B.; Hadar, I.; Bekenstein, Y.; Amit, Y.; Popov, I.; Banin, U. Couples of colloidal semiconductor nanorods formed by self-limited assembly. Nat. Mater. 2014, 13, 301–307.

    CAS  Google Scholar 

  56. Guzelturk, B.; Erdem, O.; Olutas, M.; Kelestemur, Y.; Demir, H. V. Stacking in colloidal nanoplatelets: Tuning excitonic properties. ACS Nano 2014, 8, 12524–12533.

    CAS  Google Scholar 

  57. Diroll, B. T.; Cho, W.; Coropceanu, I.; Harvey, S. M.; Brumberg, A.; Holtgrewe, N.; Crooker, S. A.; Wasielewski, M. R.; Prakapenka, V. B.; Talapin, D. V. et al. Semiconductor nanoplatelet excimers. Nano Lett. 2018, 18, 6948–6953.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Beijing Natural Science Foundation (No. Z210018), the National Natural Science Foundation of China (Nos. 62105025, 12172047, 62127817, and 22173009), the Beijing Institute of Technology Research Fund Program for Young Scholars (No. 3040011182113). The authors would like to acknowledge the Experimental Center of Advanced Materials of Beijing Institute of Technology for the support in materials synthesis and characterization. We also acknowledge Dr. Xiangmin Hu for the helpful discussion. Theoretical calculations were performed using resources of the Supercomputer Centre in Chongqing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaoling Yang, Guofeng Zhang or Jiawang Hong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, Z., Lun, Y., Li, J. et al. Breaking the symmetry of colloidal 2D nanoplatelets: Twist induced quantum coupling. Nano Res. 16, 10522–10529 (2023). https://doi.org/10.1007/s12274-023-5529-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5529-x

Keywords

Navigation