Skip to main content
Log in

Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) incorporated polymeric composites have been extensively investigated for microwave absorption at target frequencies to meet the requirement of radar cross-section reduction. In this work, a strategy of efficient utilization of CNT in producing CNT incorporated aramid papers is demonstrated. The layer-by-layer self-assembly technique is used to coat the surfaces of meta-aramid fibers and fibrils with CNT, providing novel raw materials available for the large-scale papermaking. The hierarchical construction of CNT networks resolves the dilemma of increasing CNT content and avoiding the agglomeration of CNT, which is a frequent challenge for CNT incorporated polymeric composites. The composite paper, which contains abundant heterogeneous interfaces and long-range conductive networks, is capable of reaching a high permittivity and dielectric loss tangent at a low CNT loading, and its complex permittivity is, so far, adjustable in the range of (1.20–j0.05) to (25.17–j18.89) at 10 GHz. Some papers with optimal matching thicknesses achieve a high-efficiency microwave absorption with a reflection loss lower than −10 dB in the entire X-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaker, R.; Sadeghzadeh. A. Passive techniques for target radar cross section reduction: A comprehensive review. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22411.

    Article  Google Scholar 

  2. Zohuri, B. Radar Energy Warfare and the Challenges of Stealth Technology; Springer: Cham, 2020.

    Book  Google Scholar 

  3. Gaylor, K. Radar Absorbing Materials-Mechanisms and Materials. MRL Technical Report MRL-TR-89-1, Victoria, Australia, 1989; pp 1–25.

  4. Mu, Z. G.; Wei, G. K.; Zhang, H.; Gao, L.; Zhao, Y.; Tang, S. L.; Ji, G. B. The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res. 2022, 15, 7731–7741.

    Article  CAS  Google Scholar 

  5. Xu, H. X.; Zhang, G. Z.; Wang, Y.; Wang, Y. R.; Wang, H. L.; Huang, Y.; Liu. P. B. Heteroatoms-doped carbon nanocages with enhanced dipolar and defective polarization toward light-weight microwave absorbers. Nano Res. 2022, 15, 8705–8713.

    Article  CAS  Google Scholar 

  6. Zhao, P. Y.; Wang, H. Y.; Cai, B.; Sun, X. B.; Hou, Z. L.; Wu, J. T.; Bai, M.; Wang. G. S. Electrospinning fabrication and ultra-wideband electromagnetic wave absorption properties of CeO2/N-doped carbon nanofibers. Nano Res. 2022, 15, 7788–7796.

    Article  CAS  Google Scholar 

  7. Qin, F. X.; Peng, M. Y.; Estevez, D.; Brosseau, C. Electromagnetic composites: From effective medium theories to metamaterials. J. Appl. Phys. 2022, 132, 101101.

    Article  CAS  Google Scholar 

  8. Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, https://doi.org/10.1202/adma.202211642.

  9. Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2020, 16, 1773–1778.

    Article  Google Scholar 

  10. Ruiz-Perez, F.; López-Estrada, S. M.; Tolentino-Hernández. R. V.; Caballero-Briones, F. Carbon-based radar absorbing materials: A critical review. J. Sci.: Adv. Mater. Devices 2022, 7, 100454.

    CAS  Google Scholar 

  11. Qin, M.; Zhang, L. M.; Wu. H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

    Article  CAS  Google Scholar 

  12. Coleman, J. N.; Curran, S.; Dalton, A. B.; Davey, A. P.; McCarthy, B.; Blau, W.; Barklie. R. C. Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Phys. Rev. B 1998, 58, R7492–R7495.

    Article  CAS  Google Scholar 

  13. Sandler, J.; Shaffer, M. S. P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle. A. H. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999, 40, 5967–5971.

    Article  CAS  Google Scholar 

  14. Qi, X. S.; Xu, J. L.; Hu, Q.; Deng, Y.; Xie, R.; Jiang, Y.; Zhong, W.; Du. Y. W. Metal-free carbon nanotubes: Synthesis, and enhanced intrinsic microwave absorption properties. Sci. Rep. 2016, 6, 28310.

    Article  CAS  Google Scholar 

  15. Yang, R. B.; Kuo, W. S.; Lai. H. C. Effect of carbon nanotube dispersion on the complex permittivity and absorption of nanocomposites in 2–18 GHz ranges. J. Appl. Polym. Sci. 2014, 131, 40963.

    Article  Google Scholar 

  16. Lee, S. E.; Kang, J. H.; Kim. C. G. Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites. Compos. Struct. 2006, 76, 397–405.

    Article  Google Scholar 

  17. Choi, W. H.; Shin, J. H.; Song, T. H.; Kim, J. B.; Lee, W. Y.; Kim, C. G. A thin hybrid circuit-analog (CA) microwave absorbing double-slab composite structure. Compos. Struct. 2015, 124, 310–316.

    Article  Google Scholar 

  18. Lee, S. E.; Lee, W. J.; Oh, K. S.; Kim. C. G. Broadband all fiber-reinforced composite radar absorbing structure integrated by inductive frequency selective carbon fiber fabric and carbon-nanotube-loaded glass fabrics. Carbon 2016, 107, 564–572.

    Article  CAS  Google Scholar 

  19. Li, K.; Zhao, R.; Xia, J. X.; Zhao. G. L. Reinforcing microwave absorption multiwalled carbon nanotube-epoxy composites using glass fibers for multifunctional applications. Adv. Eng. Mater. 2020, 22, 2070008.

    Article  Google Scholar 

  20. Cheon, J.; Lim, S. J.; Kim. M. A composite RAS with an enhanced uniformity of absorbing performance using a MWCNT-anchored aramid fiber. Compos. Sci. Technol. 2020, 200, 108442.

    Article  CAS  Google Scholar 

  21. Wang, H.; Xiu, X.; Wang, Y.; Xue, Q.; Ju, W. B.; Che, W. Q.; Liao, S. W.; Jiang, H. Y.; Tang, M.; Long, J. et al. Paper-based composites as a dual-functional material for ultralight broadband radar absorbing honeycombs. Compos. B Eng. 2020, 202, 108378.

    Article  CAS  Google Scholar 

  22. Chen, S. H.; Kuo, W. S.; Yang. R. B. Microwave absorbing properties of a radar absorbing structure composed of carbon nanotube papers/glass fabric composites. Int. J. Appl. Ceram. Technol. 2019, 16, 2065–2072.

    Article  CAS  Google Scholar 

  23. Zhao, D. L.; Zhang, J. M.; Li, X.; Shen. Z. M. Electromagnetic and microwave absorbing properties of Co-filled carbon nanotubes. J. Alloys Compd. 2010, 505, 712–716.

    Article  CAS  Google Scholar 

  24. Zhang, X.; Wang, X. Q.; Sha, P.; Wang, B. D.; Ding, Y.; Du, S. Y. High-efficiency electromagnetic wave absorption of epoxy composites filled with ultralow content of reduced graphene/carbon nanotube oxides. Compos. Sci. Technol. 2020, 189, 108020.

    Article  CAS  Google Scholar 

  25. Liang, J. J.; Huang, Y.; Zhang, F.; Li, N.; Ma, Y. F.; Li, F. F.; Chen, Y. S. High microwave absorption performances for single-walled carbon nanotube—Epoxy composites with ultra-low loadings. Chin. Phys. B 2014, 23, 088802.

    Article  Google Scholar 

  26. Micheli, D.; Pastore, R.; Apollo, C.; Marchetti, M.; Gradoni, G.; Mariani Primiani, V.; Moglie. F. Broadband electromagnetic absorbers using carbon nanostructure-based composites. IEEE Trans. Microw. Theory Tech. 2011, 59, 2633–2646.

    Article  CAS  Google Scholar 

  27. Lin, H. Y.; Zhu, H.; Guo, H. F.; Yu. L. F. Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes. Mater. Lett. 2007, 61, 3547–3550.

    Article  CAS  Google Scholar 

  28. Ting, T. H.; Chiang, C. C.; Lin, P. C.; Lin. C. H. Optimisation of the electromagnetic matching of manganese dioxide/multi-wall carbon nanotube composites as dielectric microwave-absorbing materials. J. Magn. Magn. Mater. 2013, 339, 100–105.

    Article  CAS  Google Scholar 

  29. Tang, J.; Bi, S.; Su, Z. A.; Hou, G. L.; Liu, C. H.; Li, H.; Lin. Y. Y. Surface modification and microwave absorption properties of lightweight CNT absorbent. J. Mater. Sci. Mater. Electron. 2019, 30, 21048–21058.

    Article  CAS  Google Scholar 

  30. Correa-Duarte, M. A.; Kosiorek, A.; Kandulski, W.; Giersig, M.; Liz-Marzán. L. M. Layer-by-layer assembly of multiwall carbon nanotubes on spherical colloids. Chem. Mater. 2005, 17, 3268–3272.

    Article  CAS  Google Scholar 

  31. Decher. G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997, 277, 1232–1237.

    Article  CAS  Google Scholar 

  32. Xie, B.; Liu, Y. L.; Ding, Y. T.; Zheng, Q. S.; Xu. Z. P. Mechanics of carbon nanotube networks: Microstructural evolution and optimal design. Soft Matter 2011, 7, 10039–10047.

    Article  CAS  Google Scholar 

  33. Ryu, S. Y.; Chung, J. W.; Kwak. S. Y. Amphiphobic meta-aramid nanofiber mat with improved chemical stability and mechanical properties. Eur. Polym. J. 2017, 91, 111–120.

    Article  CAS  Google Scholar 

  34. Alava, M.; Niskanen. K. The physics of paper. Rep. Prog. Phys. 2006, 69, 669–723.

    Article  Google Scholar 

  35. Shaffner. T. J.; Van Veld, R. D. ‘Charging’ effects in the scanning electron microscope. J. Phys. E:Sci. Instrum. 1971, 4, 633–637.

    Article  CAS  Google Scholar 

  36. Gingold, D. B.; Lobb. C. J. Percolative conduction in three dimensions. Phys. Rev. B 1990, 42, 8220–8224.

    Article  CAS  Google Scholar 

  37. Deng, F.; Ito, M.; Noguchi, T.; Wang, L. F.; Ueki, H.; Niihara, K. I.; Kim, Y. A.; Endo, M.; Zheng. Q. S. Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites. ACS Nano 2011, 5, 3858–3866.

    Article  CAS  Google Scholar 

  38. Luo, F.; Liu, D. Q.; Cao, T. S.; Cheng, H. F.; Kuang, J. C.; Deng, Y. J.; Xie. W. Study on broadband microwave absorbing performance of gradient porous structure. Adv. Compos. Hybrid Mater. 2021, 4, 591–601.

    Article  CAS  Google Scholar 

  39. Younes, H.; Li, R.; Lee, S. E.; Kim, Y. K.; Choi, D. Gradient 3D-printed honeycomb structure polymer coated with a composite consisting of Fe3O4 multi-granular nanoclusters and multi-walled carbon nanotubes for electromagnetic wave absorption. Synth. Met. 2021, 275, 116731.

    Article  CAS  Google Scholar 

  40. Zhao, Y. C.; Ren, F.; He, L.; Zhang, J. S.; Yuan, Y. N.; Xi. X. L. Design of graded honeycomb radar absorbing structure with wideband and wide-angle properties. Int. J. Microwave Wireless Technol. 2019, 11, 143–150.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (No. U21A2093). This work is partially financed by the Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenbo Ju or Junwei Gu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chen, L., Han, Y. et al. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 16, 7801–7809 (2023). https://doi.org/10.1007/s12274-023-5522-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5522-4

Keywords

Navigation