Skip to main content
Log in

Lifting surface reconstruction of Au (100) by tellurium adsorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The Au (100) surface has been a subject of intense studies due to excellent catalytic activities and its model character for surface science. However, the spontaneous surface reconstruction buries active Au (100) plane and limits practical applications, and how to controllably eliminate the surface reconstruction over large scale remains challenging. Here, we experimentally and theoretically demonstrate that simple decoration of the Au (100) surface by tellurium (Te) atoms can uniquely lift its reconstruction over large scale. Scanning tunneling microscopy imaging reveals that the lifting of surface reconstruction preferentially starts from the boundaries of distinct domains and then extends progressively into the domains with the reconstruction rows perpendicular to the boundaries, leaving a Au (100)−(1 × 1) surface behind. The Au (100)−(1 × 1) is saturated at ∼ 84% ± 2% with respect to the whole surface at a Te coverage of 0.16 monolayer. With further increasing the Te coverage to 0.25 monolayer, the Au (100)−(1 × 1) surface becomes reduced and overlapped by a well-ordered (2 × 2)-Te superstructure. No similar behavior is found for Te-decorated Au (111), Cu (111), and Cu (100) surfaces, nor for the decorated Au (100) with other elements. This result may pave the way to design Au-based catalysts and, as an intermediate step, even potentially open a new route to constructing complex transition metal dichalcogenides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  2. Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57–69.

    Article  CAS  Google Scholar 

  3. Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal. 2012, 2, 1654–1660.

    Article  CAS  Google Scholar 

  4. Štrbac, S.; Adžić, R. R. The influence of OH chemisorption on the catalytic properties of gold single crystal surfaces for oxygen reduction in alkaline solutions. J. Electroanal. Chem. 1996, 403, 169–181.

    Article  Google Scholar 

  5. Hammer, R.; Sander, A.; Förster, S.; Kiel, M.; Meinel, K.; Widdra, W. Surface reconstruction of Au (001): High-resolution real-space and reciprocal-space inspection. Phys. Rev. B 2014, 90, 035446.

    Article  CAS  Google Scholar 

  6. Pieczyrak, B.; Trembulowicz, A.; Antczak, G.; Jurczyszyn, L. Nature of monovacancies on quasi-hexagonal structure of reconstructed Au (100) surface. Appl. Surf. Sci. 2017, 407, 345–352.

    Article  CAS  Google Scholar 

  7. Ercolessi, F.; Tosatti, E.; Parrinello, M. Au (100) surface reconstruction. Phys. Rev. Lett. 1986, 57, 719–722.

    Article  CAS  Google Scholar 

  8. Magnussen, O. M.; Hotlos, J.; Behm, R. J.; Batina, N.; Kolb, D. M. An in-situ scanning tunneling microscopy study of electrochemically induced “hex” ↔ (1 × 1) transitions on Au (100) electrodes. Surf. Sci. 1993, 296, 310–332.

    Article  CAS  Google Scholar 

  9. Trembulowicz, A.; Pieczyrak, B.; Jurczyszyn, L.; Antczak, G. Coexistence of nanowire-like hex and (1 × 1) phases in the topmost layer of Au (100) surface. Nanotechnology 2019, 30, 045704.

    Article  CAS  Google Scholar 

  10. Tempas, C. D.; Skomski, D.; Tait, S. L. Lifting of the Au (100) surface reconstruction by Pt, Cr, Fe, and Cu adsorption. Surf. Sci. 2016, 654, 33–38.

    Article  CAS  Google Scholar 

  11. Hernán, O. S.; De Parga, A. L. V.; Gallego, J. M.; Miranda, R. Self-surfactant effect on Fe/Au (100): Place exchange plus Au self-diffusion. Surf. Sci. 1998, 415, 106–121.

    Article  Google Scholar 

  12. Zhang, E. W.; Lin, F. R.; Lei, Z. H.; Qi, S.; Ban, S. Y.; Vinu, A.; Yi, J. B.; Liu, Y. P. Twist the doorknob to open the electronic properties of graphene-based van der Waals structure. Matter 2021, 4, 3444–3482.

    Article  CAS  Google Scholar 

  13. Jiang, Y.; Liang, X. H.; Ren, S. D.; Chen, C. L.; Fan, L.; Yang, Y. W.; Tang, J. M.; Luh, D. A. The growth of sulfur adlayers on Au (100). J. Chem. Phys. 2015, 142, 064708.

    Article  Google Scholar 

  14. Ikemiya, N.; Iwai, D.; Yamada, K.; Vidu, R.; Hara, S. Atomic structures and growth morphologies of electrodeposited Te film on Au (100) and Au (111) observed by in situ atomic force microscopy. Surf. Sci. 1996, 369, 199–208.

    Article  CAS  Google Scholar 

  15. Sorenson, T. A.; Suggs, D. W.; Nandhakumar, I.; Stickney, J. L. Phase transitions in the electrodeposition of tellurium atomic layers on Au (100). J. Electroanal. Chem. 1999, 467, 270–281.

    Article  CAS  Google Scholar 

  16. Sorenson, T. A.; Lister, T. E.; Huang, B. M.; Stickney, J. L. A comparison of atomic layers formed by electrodeposition of selenium and tellurium scanning tunneling microscopy studies on Au (100) and Au (111). J. Electrochem. Soc. 1999, 146, 1019–1027.

    Article  CAS  Google Scholar 

  17. Cheng, F.; Xu, H.; Xu, W. T.; Zhou, P. J.; Martin, J.; Loh, K. P. Controlled growth of 1D MoSe2 nanoribbons with spatially modulated edge states. Nano Lett. 2017, 17, 1116–1120.

    Article  CAS  Google Scholar 

  18. Cheng, F.; Hu, Z. X.; Xu, H.; Shao, Y.; Su, J.; Chen, Z.; Ji, W.; Loh, K. P. Interface engineering of Au (111) for the growth of 1T′-MoSe2. ACS Nano 2019, 13, 2316–2323.

    CAS  Google Scholar 

  19. Comin, F.; Citrin, P. H.; Eisenberger, P.; Rowe, J. E. Unusual chemisorption behavior of Te on Cu {111} versus Cu {100}. Phys. Rev. B 1982, 26, 7060–7062.

    Article  CAS  Google Scholar 

  20. Lahti, M.; Chaudhuri, A.; Pussi, K.; Hesp, D.; McLeod, I. M.; Dhanak, V. R.; King, M. O.; Kadodwala, M.; Maclaren, D. A. The structural analysis of Cu (111)-Te \((\sqrt 3 \times \sqrt 3 ){\rm{R}}{30^\circ }\) and \((2\sqrt 3 \times 2\sqrt 3 ){\rm{R}}{30^\circ }\) surface phases by quantitative LEED and DFT. Surf. Sci. 2014, 622, 35–43.

    Article  CAS  Google Scholar 

  21. Hasegawa, Y.; Avouris, P. Manipulation of the reconstruction of the Au (111) surface with the STM. Science 1992, 258, 1763–1765.

    Article  CAS  Google Scholar 

  22. Bartelt, N. C.; Thürmer, K. Structure and energetics of the elbows in the Au (111) herringbone reconstruction. Phys. Rev. B 2021, 104, 165425.

    Article  CAS  Google Scholar 

  23. Liu, Y. P.; Qiu, Z. Z.; Carvalho, A.; Bao, Y.; Xu, H.; Tan, S. J. R.; Liu, W.; Neto, A. H. C.; Loh, K. P.; Lu, J. Gate-tunable giant stark effect in few-layer black phosphorus. Nano Lett. 2017, 17, 1970–1977.

    Article  CAS  Google Scholar 

  24. Liu, Y. P.; Rodrigues, J. N. B.; Luo, Y. Z.; Li, L. J.; Carvalho, A.; Yang, M.; Laksono, E.; Lu, J. P.; Bao, Y.; Xu, H. et al. Tailoring sample-wide pseudo-magnetic fields on a graphene-black phosphorus heterostructure. Nat. Nanotechnol. 2018, 13, 828–834.

    Article  CAS  Google Scholar 

  25. Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

    Article  CAS  Google Scholar 

  26. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  27. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

    Article  CAS  Google Scholar 

  28. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  29. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  30. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  31. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  32. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  33. Davidson, E. R. Matrix eigenvector methods. In Methods in Computational Molecular Physics; Diercksen, G. H. F.; Wilson, S., Eds.; Springer: Dordrecht, 1983; pp 95–113.

    Chapter  Google Scholar 

  34. Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805–813.

    Article  CAS  Google Scholar 

  35. Vanpoucke, D. E. P.; Brocks, G. Formation of Pt-induced Ge atomic nanowires on Pt/Ge (001): A density functional theory study. Phys. Rev. B 2008, 77, 241308.

    Article  Google Scholar 

  36. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276.

    Article  CAS  Google Scholar 

  37. Jones, R. O.; Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 1989, 61, 689–746.

    Article  CAS  Google Scholar 

  38. Zhang, T. H.; Anderson, A. B. Oxygen reduction on platinum electrodes in base: Theoretical study. Electrochim. Acta 2007, 53, 982–989.

    Article  CAS  Google Scholar 

  39. Tarasevich, M. R.; Sadkowski, A.; Yeager, E. Oxygen electrochemistry. In Comprehensive Treatise of Electrochemistry: Volume 7 Kinetics and Mechanisms of Electrode Processes; Conway, B. E.; Bockris, J. O. M.; Yeager, E.; Khan, S. U. M.; White, R. E., Eds.; Springer: Boston, 1983; pp 301–398.

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support provided by the National Natural Science Foundation of China (No. 1210040808), the Natural Science Foundation of Jiangsu Province (Nos. BK20210312 and BK20212008), the National Key Research and Development Program of China (No. 2019YFA0705400), the Fundamental Research Funds for the Central Universities (Nos. NJ2022002, NZ2020001, and NS2022014), the Program for Innovative Talents and Entrepreneur in Jiangsu, Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nos. MCMS-I-0419G02 and MCMS-I-0421K01), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Yang, Yanpeng Liu or Wanlin Guo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, E., Lu, H., Zhang, W. et al. Lifting surface reconstruction of Au (100) by tellurium adsorption. Nano Res. 16, 6967–6973 (2023). https://doi.org/10.1007/s12274-023-5461-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5461-0

Keywords

Navigation