Skip to main content
Log in

Manipulating functional groups between polyvinylidene difluoride and nanoparticles for high-performance triboelectric nanogenerator

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Interface functional groups play an essential role in regulating the electrical properties of bulk materials. In this work, we designed a novel strategy to explore a new way to enhance triboelectric performance by regulating the functional groups between nano-fillers and polymer matrix without obvious changes in the dielectric constant. The silica nanoparticles (SNPs) modified perfluoro-silane coupling agents (PFSCAs) with different chain lengths were added to the polyvinylidene difluoride to regulate the transferred charge density (TCD) of triboelectric nanogenerators (TENGs). When the doping concentration of perfluorodecyl modified SNPs is 2.25 wt.%, the nanocomposite film based TENG exhibits the maximum TCD of 166 µC/m2 and power density of 3.12 W/m2 which are 6 times and 39 times as big as those of pure polyvinylidene difluoride (PVDF) film. The charge accumulation and decay process show that interface functional groups dominate the performance of TENGs. Then, a Fermi level model is proposed and why the TCD could be regulated by the concentration of nanoparticles in bulk materials is explained. This work provides a new concept for understanding the performance of TENG independent dielectric constant and points out a new direction for enhancing TENG’s performance, since wealthy functional groups with selectivity are applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

    Article  Google Scholar 

  2. Shao, J. J.; Yang, Y.; Yang, O.; Wang, J.; Willatzen, M.; Wang, Z. L. Designing rules and optimization of triboelectric nanogenerator arrays. Adv. Energy Mater. 2021, 11, 2100065.

    Article  CAS  Google Scholar 

  3. Li, X.; Zhu, P. C.; Zhang, S. C.; Wang, X. C.; Luo, X. P.; Leng, Z. W.; Zhou, H.; Pan, Z. F.; Mao, Y. C. A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional E-skin. ACS Nano 2022, 16, 5909–5919.

    Article  CAS  Google Scholar 

  4. Tang, Y. J.; Zhou, H.; Sun, X. P.; Diao, N. H.; Wang, J. B.; Zhang, B. S.; Qin, C.; Liang, E. J.; Mao, Y. C. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 2020, 30, 1907893.

    Article  CAS  Google Scholar 

  5. Zhou, H.; Huang, W.; Xiao, Z.; Zhang, S. C.; Li, W. Z.; Hu, J. H.; Feng, T. X.; Wu, J.; Zhu, P. C.; Mao, Y. C. Deep-learning-assisted noncontact gesture-recognition system for touchless human—machine interfaces. Adv. Funct. Mater. 2022, 32, 2208271.

    Article  CAS  Google Scholar 

  6. Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

    Article  CAS  Google Scholar 

  7. Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

    Article  CAS  Google Scholar 

  8. Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

    Article  CAS  Google Scholar 

  9. Song, G.; Kim, Y.; Yu, S.; Kim, M. O.; Park, S. H.; Cho, S. M.; Velusamy, D. B.; Cho, S. H.; Kim, K. L.; Kim, J. et al. Molecularly engineered surface triboelectric nanogenerator by self-assembled monolayers (METS). Chem. Mater. 2015, 27, 4749–4755.

    Article  CAS  Google Scholar 

  10. Wen, R. M.; Guo, J. M.; Yu, A. F.; Zhang, K.; Kou, J. Z.; Zhu, Y. X.; Zhang, Y.; Li, B. W.; Zhai, J. Y. Remarkably enhanced triboelectric nanogenerator based on flexible and transparent monolayer titania nanocomposite. Nano Energy 2018, 50, 140–147.

    Article  CAS  Google Scholar 

  11. Firdous, I.; Fahim, M.; Wang, L. Y.; Li, W. J.; Zi, Y. L.; Daoud, W. A. Boosting current output of triboelectric nanogenerator by two orders of magnitude via hindering interfacial charge recombination. Nano Energy 2021, 89, 106315.

    Article  CAS  Google Scholar 

  12. Wang, H. L.; Guo, Z. H.; Zhu, G.; Pu, X.; Wang, Z. L. Boosting the power and lowering the impedance of triboelectric nanogenerators through manipulating the permittivity for wearable energy harvesting. ACS Nano 2021, 15, 7513–7521.

    Article  CAS  Google Scholar 

  13. Wen, R. M.; Guo, J. M.; Yu, A. F.; Zhai, J. Y.; Wang, Z. L. Humidity-resistive triboelectric nanogenerator fabricated using metal organic framework composite. Adv. Funct. Mater. 2019, 29, 1807655.

    Article  Google Scholar 

  14. Cui, N. Y.; Gu, L.; Lei, Y. M.; Liu, J. M.; Qin, Y.; Ma, X. H.; Hao, Y.; Wang, Z. L. Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator. ACS Nano 2016, 10, 6131–6138.

    Article  CAS  Google Scholar 

  15. Kim, D. W.; Lee, J. H.; You, I.; Kim, J. K.; Jeong, U. Adding a stretchable deep-trap interlayer for high-performance stretchable triboelectric nanogenerators. Nano Energy 2018, 50, 192–200.

    Article  CAS  Google Scholar 

  16. Tang, N.; Zheng, Y. B.; Yuan, M. M.; Jin, K.; Haick, H. High-performance polyimide-based water—solid triboelectric nanogenerator for hydropower harvesting. ACS Appl. Mater. Interfaces 2021, 13, 32106–32114.

    Article  CAS  Google Scholar 

  17. Tao, X. L.; Li, S. Y.; Shi, Y. X.; Wang, X. L.; Tian, J. W.; Liu, Z. Q.; Yang, P.; Chen, X. Y.; Wang, Z. L. Triboelectric polymer with high thermal charge stability for harvesting energy from 200 C flowing Air. Adv. Funct. Mater. 2021, 31, 2106082.

    Article  CAS  Google Scholar 

  18. Li, Y. Q.; Zhang, L.; Li, C. Z. Highly transparent and scratch resistant polysiloxane coatings containing silica nanoparticles. J. Colloid Interface Sci. 2020, 559, 273–281.

    Article  CAS  Google Scholar 

  19. Lin, S. Q.; Zheng, M. L.; Luo, J. J.; Wang, Z. L. Effects of surface functional groups on electron transfer at liquid—solid interfacial contact electrification. ACS Nano 2020, 14, 10733–10741.

    Article  CAS  Google Scholar 

  20. Li, S. Y.; Nie, J. H.; Shi, Y. X.; Tao, X. L.; Wang, F.; Tian, J. W.; Lin, S. Q.; Chen, X. Y.; Wang, Z. L. Contributions of different functional groups to contact electrification of polymers. Adv. Mater. 2020, 32, 2001307.

    Article  CAS  Google Scholar 

  21. Shen, Y. Z.; Wu, Y.; Tao, J.; Zhu, C. L.; Chen, H. F.; Wu, Z. W.; Xie, Y. H. Spraying fabrication of durable and transparent coatings for anti-icing application: Dynamic water repellency, icing delay, and ice adhesion. ACS Appl. Mater. Interfaces 2019, 11, 3590–3598.

    Article  CAS  Google Scholar 

  22. Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

    Article  Google Scholar 

  23. Cai, Y.; Li, J.; Yi, L. M.; Yan, X. J.; Li, J. W. Fabricating superhydrophobic and oleophobic surface with silica nanoparticles modified by silanes and environment-friendly fluorinated chemicals. Appl. Surf. Sci. 2018, 450, 102–111.

    Article  CAS  Google Scholar 

  24. Chen, W. Y.; Lai, S. N.; Yen, C. C.; Jiang, X. F.; Peroulis, D.; Stanciu, L. A. Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 2020, 14, 11490–11501.

    Article  CAS  Google Scholar 

  25. Shah, S. A.; Habib, T.; Gao, H.; Gao, P.; Sun, W.; Green, M. J.; Radovic, M. Template-free 3D titanium carbide (Ti3C2Tx) MXene particles crumpled by capillary forces. Chem. Commun. 2017, 53, 400–403.

    Article  CAS  Google Scholar 

  26. Wen, R. M.; Guo, J. M.; Zhao, C. L.; Liu, Y. Q. Nanocomposite capacitors with significantly enhanced energy density and breakdown strength utilizing a small loading of monolayer Titania. Adv. Mater. Interfaces 2018, 5, 1701088.

    Article  Google Scholar 

  27. Kim, S. H.; Kang, H. S.; Sohn, E. H.; Chang, B. J.; Park, I. J.; Lee, S. G. High discharge energy density and efficiency in newly designed PVDF@SiO2-PVDF composites for energy capacitors. ACS Appl. Energy Mater. 2020, 3, 8937–8945.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52073032 and 51872031) and the Fundamental Research Funds for the Central Universities (No. JB211305).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenwen Hu, Aifang Yu or Junyi Zhai.

Electronic Supplementary Material

12274_2023_5426_MOESM1_ESM.pdf

Manipulating functional groups between polyvinylidene difluoride and nanoparticles for high-performance triboelectric nanogenerator

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, L., Guo, L. et al. Manipulating functional groups between polyvinylidene difluoride and nanoparticles for high-performance triboelectric nanogenerator. Nano Res. 16, 11855–11861 (2023). https://doi.org/10.1007/s12274-023-5426-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5426-8

Keywords

Navigation