Skip to main content
Log in

Parametric study on controllable growth of SrZrS3 thin films with good conductivity for photodetectors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

SrZrS3 is a promising chalcogenide perovskite with unique advantages including high abundance of consisting elements, high chemical stability, strong light absorption above its direct band gap, and excellent carrier transport ability. While unfortunately, due to the lack of breakthroughs in its thin film synthesis technique, its optoelectronic properties are not fully investigated, not to mention the device applications. In this work, large-area and uniform SrZrS3 thin film (5 cm × 5 cm) was prepared by facile sputtering method, followed by a post-annealing treatment at a high temperature of 1000 °C for 2–12 h under CS2 atmosphere. All SrZrS3 samples prepared adopt distorted orthorhombic structure with pnma space group and have high crystallinity. In addition, the band gap of SrZrS3 thin film is measured to be 2.29 eV, higher than that of the powder form (2.06 eV). Importantly, the light absorption coefficient of SrZrS3 thin film reaches over 105 cm−1, and the carrier mobility is as high as 106 cm2/Vs. The above advantages allow us to use the SrZrS3 thin film as photoactive layer for photodetector applications. Finally, a symmetrically structured photoconductive detector was fabricated, performing a high responsivity of 8 A/W (405 nm light excitation). These inspiring results promise the glorious application potential of SrZrS3 thin film in photodetectors, solar cells, and other optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J. S.; Shum, P. P.; Su, L. A review of geometry-confined perovskite morphologies: From synthesis to efficient optoelectronic applications. Nano Res. 2022, 15, 7402–7431.

    Article  CAS  Google Scholar 

  2. Gu, Z. K.; Wang, Y.; Wang, S. H.; Zhang, T.; Zhao, R. D.; Hu, X. T.; Huang, Z. D.; Su, M.; Xu, Q.; Li, L. H. et al. Controllable printing of large-scale compact perovskite films for flexible photodetectors. Nano Res. 2022, 15, 1547–1553.

    Article  CAS  Google Scholar 

  3. Li, L. Y.; Liu, J. X.; Zeng, M. Q.; Fu, L. Space-confined growth of metal halide perovskite crystal films. Nano Res. 2021, 14, 1609–1624.

    Article  CAS  Google Scholar 

  4. Wang, H. P.; Li, S. Y.; Liu, X. Y.; Shi, Z. F.; Fang, X. S.; He, J. H. Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 2022, 33, 2003309.

    Article  Google Scholar 

  5. Sopiha, K. V.; Comparotto, C.; Márquez, J. A.; Scragg, J. J. S. Chalcogenide perovskites: Tantalizing prospects, challenging materials. Adv. Opt. Mater. 2022, 10, 2101704.

    Article  CAS  Google Scholar 

  6. Swarnkar, A.; Mir, W. J.; Chakraborty, R.; Jagadeeswararao, M.; Sheikh, T.; Nag, A. Are chalcogenide perovskites an emerging class of semiconductors for optoelectronic properties and solar cell? Chem. Mater. 2019, 31, 565–575.

    Article  CAS  Google Scholar 

  7. Buffiere, M.; Dhawale, D. S.; El-Mellouhi, F. Chalcogenide materials and derivatives for photovoltaic applications. Energy Technol. 2019, 7, 1900819.

    Article  CAS  Google Scholar 

  8. Glück, N.; Bein, T. Prospects of lead-free perovskite-inspired materials for photovoltaic applications. Energy Environ. Sci. 2020, 13, 4691–4716.

    Article  Google Scholar 

  9. Perera, S.; Hui, H. L.; Zhao, C.; Xue, H. T.; Sun, F.; Deng, C. H.; Gross, N.; Milleville, C.; Xu, X. H.; Watson, D. F. et al. Chalcogenide perovskites—an emerging class of ionic semiconductors. Nano Energy 2016, 22, 129–135.

    Article  CAS  Google Scholar 

  10. Sadeghi, I.; Ye, K.; Xu, M.; Li, Y. F.; LeBeau, J. M.; Jaramillo, R. Making BaZrS3 chalcogenide perovskite thin films by molecular beam epitaxy. Adv. Funct. Mater. 2022, 31, 2105563.

    Article  Google Scholar 

  11. Yu, Z. H.; Wei, X. C.; Zheng, Y. X.; Hui, H. L.; Bian, M. Y.; Dhole, S.; Seo, J. H.; Sun, Y. Y.; Jia, Q. X.; Zhang, S. B. et al. Chalcogenide perovskite BaZrS3 thin-film electronic and optoelectronic devices by low temperature processing. Nano Energy 2022, 85, 105959.

    Article  Google Scholar 

  12. Ravi, V. K.; Yu, S. H.; Rajput, P. K.; Nayak, C.; Bhattacharyya, D.; Chung, D. S.; Nag, A. Colloidal BaZrS3 chalcogenide perovskite nanocrystals for thin film device fabrication. Nanoscale 2022, 13, 1616–1623.

    Article  Google Scholar 

  13. Niu, S. Y.; Huyan, H. X.; Liu, Y.; Yeung, M.; Ye, K.; Blankemeier, L.; Orvis, T.; Sarkar, D.; Singh, D. J.; Kapadia, R. et al. Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 2017, 29, 1604733.

    Article  Google Scholar 

  14. Eya, H. I.; Ntsoenzok, E.; Dzade, N. Y. First-principles investigation of the structural, elastic, electronic, and optical properties of α- and β-SrZrS3: Implications for photovoltaic applications. Materials 2020, 13, 978.

    Article  CAS  Google Scholar 

  15. Clearfield, A. The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Cryst. 1963, 16, 135–142.

    Article  CAS  Google Scholar 

  16. Goldschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 1926, 14, 477–485.

    Article  CAS  Google Scholar 

  17. Lee, C. S.; Kleinke, K. M.; Kleinke, H. Synthesis, structure, and electronic and physical properties of the two SrZrS3 modifications. Solid State Sci. 2005, 7, 1049–1054.

    Article  CAS  Google Scholar 

  18. Sun, Y. Y.; Agiorgousis, M. L.; Zhang, P. H.; Zhang, S. B. Chalcogenide perovskites for photovoltaics. Nano Lett. 2015, 15, 581–585.

    Article  CAS  Google Scholar 

  19. Wang, A.; Kingsbury, R.; McDermott, M.; Horton, M.; Jain, A.; Ong, S. P.; Dwaraknath, S.; Persson, K. A. A framework for quantifying uncertainty in DFT energy corrections. Sci. Rep. 2021, 11, 15496.

    Article  CAS  Google Scholar 

  20. Haynes, W. M. CRC Handbook of Chemistry and Physics; 92nd ed. CRC Press: Boca Raton, 2017.

    Google Scholar 

  21. Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 1952, 65, 349–354.

    Article  Google Scholar 

  22. Hui, H. L.; Yu, Z. H.; Yang, S.; Zeng, H. SrZrS3 thin films grown on different single crystal substrates by PLD. In Proceedings of APS March Meeting 2022, Chicago, USA, 2022.

  23. Shaili, H.; Beraich, M.; El Hat, A.; Ouafi, M.; Salmani, E. M.; Essajai, R.; Battal, W.; Rouchdi, M.; Taibi, M.; Hassanain, N. et al. Synthesis of the Sn-based CaSnS3 chalcogenide perovskite thin film as a highly stable photoabsorber for optoelectronic applications. J. Alloys Compd. 2022, 851, 156790.

    Article  Google Scholar 

  24. Gupta, T.; Ghoshal, D.; Yoshimura, A.; Basu, S.; Chow, P. K.; Lakhnot, A. S.; Pandey, J.; Warrender, J. M.; Efstathiadis, H.; Soni, A. et al. An environmentally stable and lead-free chalcogenide perovskite. Adv. Funct. Mater. 2020, 30, 2001387.

    Article  CAS  Google Scholar 

  25. Yang, R. Q.; Jess, A. D.; Fai, C.; Hages, C. J. Low-temperature, solution-based synthesis of luminescent chalcogenide perovskite BaZrS3 nanoparticles. J. Am. Chem. Soc. 2022, 144, 15928–15931.

    Article  CAS  Google Scholar 

  26. Márquez, J. A.; Rusu, M.; Hempel, H.; Ahmet, I. Y.; Kölbach, M.; Simsek, I.; Choubrac, L.; Gurieva, G.; Gunder, R.; Schorr, S. et al. BaZrS3 chalcogenide perovskite thin films by H2S sulfurization of oxide precursors. J. Phys. Chem. Lett. 2022, 12, 2148–2153.

    Article  Google Scholar 

  27. Nishigaki, Y.; Nagai, T.; Nishiwaki, M.; Aizawa, T.; Kozawa, M.; Hanzawa, K.; Kato, Y.; Sai, H.; Hiramatsu, H.; Hosono, H. et al. Extraordinary strong band-edge absorption in distorted chalcogenide perovskites. Solar RRL 2020, 4, 1900555.

    Article  CAS  Google Scholar 

  28. Wei, X. C.; Hui, H. L.; Zhao, C.; Deng, C. H.; Han, M. J.; Yu, Z. H.; Sheng, A.; Roy, P.; Chen, A. P.; Lin, J. H. et al. Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics. Nano Energy 2020, 68, 104317.

    Article  CAS  Google Scholar 

  29. Kumar, M.; Singh, A.; Gill, D.; Bhattacharya, S. Optoelectronic properties of chalcogenide perovskites by many-body perturbation theory. J. Phys. Chem. Lett. 2021, 12, 5301–5307.

    Article  CAS  Google Scholar 

  30. Wang, F.; Zou, X. M.; Xu, M. J.; Wang, H.; Wang, H. L.; Guo, H. J.; Guo, J. X.; Wang, P.; Peng, M.; Wang, Z. et al. Recent progress on electrical and optical manipulations of perovskite photodetectors. Adv. Sci. 2021, 8, 2100569.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62104215 and 12074347), China Postdoctoral Science Foundation (Nos. 2020M672257 and 2020TQ0286), Natural Science Foundation of Henan Province of China (No. 202300410439), and Department of Science and Technology of Henan Province of China (No. 202102210214).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanbing Han or Zhifeng Shi.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Zhang, Y., Xu, J. et al. Parametric study on controllable growth of SrZrS3 thin films with good conductivity for photodetectors. Nano Res. 16, 7867–7873 (2023). https://doi.org/10.1007/s12274-023-5412-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5412-9

Keywords

Navigation